Давление в системе легочной артерии в норме составляет 20 - 24 см вод.ст. (15 мм рт.ст., или 1,9 кПа), в верхних отделах - 120 см вод.ст., в нижних доходит до 36 см вод.ст. Легочное венозное давление в среднем составляет 8 см вод.ст., в верхних отделах - 4 см вод.ст., в нижних - до 20 см вод.ст. Скорость движения крови по капиллярам не превышает 1000 мкм*с и составляет 35 - 45% от общего сосудистого сопротивления [37].
В системе малого круга кровообращения выделяют легочный ствол, периметр которого равен 7,5 - 8,0 см, а диаметр - 3,0 см при длине 3,5 - 5,0 см. В пожилом и старческом возрасте его просвет расширяется в связи с атрофическими изменениями в стенке. Легочный ствол разделяется на правую и левую легочные артерии. В зрелом возрасте диаметр правой легочной артерии составляет 2,4 см, левой - 2,0 см. Эти сосуды относятся к артериям эластического типа. В дальнейшем эти две артерии делятся на долевые, сегментарные и субсегментарные артерии. Диаметр просвета долевых артерий равен 1,0 - 1,2 см, сегментарных - 0,6 - 0,8 см, субсегментарных - 0,4 - 0,6 см. Эти артерии относятся к мышечно-эластическому типу (рис. 1-11).
path: pictures/01-11.png
Рис. 1-11. Ветвь легочной артерии: стенка артерии состоит из наружной и внутренней эластических мембран и мышечного слоя. Окраска по Вейгерту - Ван Гизону. Ч 200.
Субсегментарные артерии делятся на артерии уровня междольковых и внутридольковых бронхов, терминальных и респираторных бронхиол, которые относятся к артериям мышечного типа. Диаметр просвета междольковых артерий составляет 800 - 1200 мкм, терминальных и внутридольковых - 400 - 700 мкм, респираторных - 300 - 100 мкм. Далее выделяют артериолы уровня альвеолярных ходов, мешочков, стенки которых представлены слоем эндотелиальных клеток и базальной эластической мембраной. Диаметр этих артериол не превышает 50 - 150 мкм. Затем они разветвляются на широкие прекапилляры, каждый из которых ветвится на 3 - 4 капилляра, переходящих в посткапилляры. Расстояние от приносящего артериального конца до выносящего венозного составляет в среднем 880 мкм (200 - 1600 мкм). В этот участок включают 7 альвеол и 14 межальвеолярных стенок с их капиллярами. По данным Э.Р. Вейбеля (1970) [3, 38], одна артериола снабжает участок паренхимы легкого в виде сферы диаметром 300 - 500 мкм. Легкие имеют от 200 до 300 млн прекапиллярных артериол. Морфометрические данные о внутрилегочных сосудах представлены в табл. 1-2.
Таблица 1-2. Морфометрические показатели внутрилегочных сосудов
Класс сосуда
Диаметр, мкм
Объем, мл
Площадь поверхности, м2
Авторы
Артерии
>500
68
0,4
[39]
Артериолы
13–500
18
1,0
[39]
Капилляры
10
60–200
50–70
[38]
Вены
13–500
13
1,2
[40]
Венулы
>500
58
0,1
[40]
Капилляры альвеол - это целая сеть в виде шестигранников с углом между капиллярными сегментами в 120; они не содержат в своей стенке мышечных элементов. Кровеносные капилляры формируют непрерывное сосудистое «полотно» площадью около 35 - 40 м<sup>2</sup>. У смежных альвеол одна сторона общей стенки является составной частью одной альвеолы, а другая - составной частью смежной (прилежащей) альвеолы. Длина каждого сегмента капиллярной сети колеблется от 9,5±3,9 до 14,2±5,2 мкм, а ширина от 6,3±2,4 до 9,9±3,5 мкм. Общее число капиллярных сегментов в альвеолах легких составляет 252x10<sup>9</sup> - 302x10<sup>9</sup>, а общая капиллярная поверхность 43,5x10<sup>4</sup> - 82,5x10<sup>4</sup> см<sup>2</sup>.
Структурные элементы капиллярной стенки альвеол входят в состав воздушнокровяного барьера, обеспечивают функцию газообмена между альвеолярным воздухом и кровью. Кровеносные капилляры располагаются в толще альвеолярной стенки, т.е. отделены от воздуха альвеол альвеолоцитами. Эндотелий альвеолярных капилляров, в отличие от эндотелия бронхиальных кровеносных капилляров, образует сплошную фенестрированную выстилку сосудов. Толщина эндотелиоцита в области ядра составляет 3 - 5 мкм. Внеядерная часть цитоплазмы эндотелиоцитов имеет толщину 200 - 500 нм, но может истончаться до 100 нм [41]. Ядра эндотелиальных клеток овальные или круглые, ядерная оболочка умеренно складчатая. Эндотелиоциты в легочной паренхиме являются наиболее часто встречающейся клеткой. Так, по данным J.D. Crapo и соавт. [28], на эндотелий капилляров приходится 40% от всех клеток паренхимы легких. Общее число этих клеток в легких человека составляет (68±7)x10<sup>9</sup>, а один эндотелиоцит в среднем имеет площадь 1353±66 мкм<sup>2</sup>. Число эндотелиоцитов в артериях и венах малого круга можно рассчитать исходя из этой величины и площади ветвей артерий и вен малого круга: соответственно 1,4 м<sup>2</sup> и 1,4 - 1,6 м<sup>2</sup> (поверхность альвеолярных капилляров до 60 м<sup>2</sup>) [28].
Поверхность эндотелиальных клеток со стороны просвета капилляров покрыта тонким слоем гликозаминогликанов и гликопротеидов (гликокаликс), который переходит на внутреннюю поверхность впячиваний плазмолеммы (внутриклеточных везикул) [42]. Указанные образования являются важнейшим механизмом трансэндотелиального (транскапиллярного) транспорта. По данным В.А. Шахламова [43], микропиноцитозные везикулы могут иметь диаметр от 20 до 150 нм, являясь подвижными образованиями, которые, перемещаясь через толщу цитоплазмы эндотелиоцита, переносят определенную порцию различных веществ.
Некоторые типы эндотелиальных клеток, в частности эндотелий системы бронхиальных артерий, имеют в цитоплазме особые «люки» - фенестры. Это так называемый фенестрированный эндотелий. Совокупная площадь поверхности эндотелиальных клеток, приходящаяся на долю фенестр, составляет от 6 до 16%. Фенестра является редуцированным до минимальной длины трансэндотелиальным каналом диаметром 40 - 80 нм; чаще фенестры располагаются кластерами [44].
В цитоплазме эндотелиоцитов встречаются редкие лизосомы, липидные капли, тельца Паладе. Имеются мембранные структуры (гликокаликс, ферменты, факторы адгезии), определяемые прежде всего со стороны люминарной поверхности эндотелиоцитов и имеющие, повидимому, отношение к обменным функциям.
Эндотелиальные клетки альвеолярных капилляров лежат на базальной мембране - электронно-плотном образовании толщиной 150 нм, при этом в зоне воздушноальвеолярного барьера встречаются участки с выпячиванием базальных мембран, альвеолоцитов II типа и эндотелиоцитов [41]. Базальный слой выполняет не только опорную функцию для эндотелиоцитов, но и определяет дифференцировку и стадию формирования клеточной популяции. При повреждении слоя нарушается процесс восстановления эндотелиальной выстилки. Базальный слой осуществляет миграцию лейкоцитов через клеточную стенку. Основной функцией альвеолярных кровеносных капилляров является участие в газообмене между воздухом альвеол и кровью капилляров. Кроме того, эндотелий капилляров осуществляет синтез, секрецию, абсорбцию и деградацию большого числа биологически важных соединений.
Различают 3 основных механизма обмена веществ через капиллярную мембрану:
---диффузия;
---фильтрацияабсорбция;
---микропиноцитоз [45].
Диффузия веществ через мембрану и цитоплазму эндотелия определяется законом Фика [46]. Для направленной диффузии необходим градиент концентрации вещества по обе стороны мембраны, при этом диффузия определяется как этим градиентом, так и коэффициентом проницаемости эндотелиальной мембраны для данного вещества, умноженным на площадь фильтрации. Вещества, растворимые в липидах, легко диффундируют через всю поверхность эндотелия. Молекулы же воды, так же как и молекулы растворенных в воде веществ, диффундируют через особые структурные образования («малые» и «большие» поры). Для кислорода градиент концентрации составляет 60 мм рт.ст., а для углекислого газа примерно 6 мм рт.ст. [46].
Вторая форма транскапиллярного обмена - фильтрацияабсорбция. Согласно гипотезе Старлинга, силы, определяющие фильтрациюабсорбцию, включают:
---разницу между гидростатическим давлением внутри капилляра и снаружи от него, в том числе в интерстициальном пространстве;
---разницу между коллоидно-осмотическим давлением в тех же зонах.
Третий способ переноса веществ через капиллярную стенку - микропиноцитоз осуществляется с помощью микропиноцитозных везикул.
Особый интерес в последнее время вызывают факторы, вырабатываемые эндотелиоцитами и влияющие на проницаемость сосудов, рост эндотелиоцитов и других сосудистых клеток, тонус сосудов, адгезивные свойства поверхности эндотелиоцитов.
Фактор сосудистой проницаемости (он же фактор роста эндотелия) является гликопротеином, связывающим гепарин [47]. Взаимодействие фактора проницаемости/роста с рецепторами эндотелия приводит к активации фосфолипазы С и потока Са<sup>2+</sup>, что, в свою очередь, вызывает пролиферацию эндотелиоцитов. Кроме того, при повреждении эндотелиоциты продуцируют богатый цистеином кислый протеин, который через Fактин клеток меняет форму эндотелиоцитов и раскрывает межклеточные щели.
Эндотелий продуцирует факторы, регулирующие рост сосудистых клеток.
Эти факторы в физиологических условиях подавляют пролиферацию гладких мышц сосудов (гепариноподобные факторы) [48], а при повреждении сосудов или регенерации тканей эндотелиоциты синтезируют митогены [49].
Значительный интерес вызвали данные о сосудосуживающих и сосудорасширяющих факторах, продуцируемых эндотелием сосудов, в том числе капилляров альвеол. Подробный обзор их приведен в работе M.J. Peach и соавт [50]. К сосудосуживающим факторам принадлежат различные эйкозанойды, в том числе лейкотриены С4 и D4, пептиды, в частности вырабатываемый эндотелием суживающий фактор (ВЭСФ). Расслабляющий фактор, названный «вырабатываемый эндотелием расслабляющий фактор» (ВЭРФ), точно не идентифицирован. Показана зависимость действия ВЭРФ от ингибирования гуанилатциклазы и накопления гуазинмонофосфата (ГМФ) [51, 52].
Важную роль в структурной и функциональной интеграции эндотелиоцитов играют адгезивные молекулы, среди которых выделяют интегрины, суперсемейство иммуноглобулинов, катхерины, селектины и некоторые другие. Интегрины представляют собой семейство интегральных мембранных рецепторов, которые через цитоскелет связывают одну клетку с другой или с внеклеточным матриксом [53]. Катхерины - это кальцийзависимые адгезивные молекулы протеинов. Они через винкулин, катенин и альфаактин связаны с актином цитоскелета и принимают участие в образовании плотных контактов [54]. Суперсемейство иммуноглобулинов включает в себя прежде всего располагающиеся на плазмолемме эндотелиоцитов иммуноглобулины, Тклеточный рецептор, а также молекулы лейкоцитарной и межклеточной адгезии. Селектины, в частности Рселектин (гликопротеид с молекулярной массой 190 кДа), который хранится в тельцах Вейбеля - Паладе, представляют собой гликопротеиды. После стимуляции эндотелиоцитов он транслируется на поверхности плазмолеммы и обеспечивает обратимую адгезию лейкоцитов - феномен «катящихся» лейкоцитов [55]. Среди других адгезивных молекул выделяют тромбоцитарный гликопротеин 4 (CD36), который обеспечивает связь эндотелиальных клеток с одним из белков внеклеточного матрикса - тромбоспондином.
Капилляры системы легочной артерии анастомозируют с капиллярами системы бронхиальной артерии и формируют общую капиллярную сеть. После слияния капилляры переходят в посткапиллярные венулы диаметром 40 - 50 мкм, затем в собирательные венулы диаметром до 100 мкм. Легочные вены собирают кровь не только из капиллярной сети альвеол, альвеолярных ходов, респираторных бронхиол, но и от капиллярной сети плевры, которая получает кровь из легочной и бронхиальных артерий. Из венозных сосудов альвеол кровь собирается в перилобулярные вены в междольковых прослойках, затем в перисубсегментарные, сегментарные, в верхнюю и нижнюю правую и левую легочные вены, которые впадают в левое предсердие. Взаимосвязь между системой легочной и бронхиальной артерий осуществляется, помимо капиллярной сети, с помощью следующих анастомозов: 1) артериоартериальных; 2) капиллярных (в стенках респираторных бронхиол); 3) венозных; 4) артериовенозных (между легочной артерией и бронхиальными венами) [56]. Около 20% крови, проходящей через легкие, не участвует в газообмене: 10% проходит через анастомозы, 10% - по гигантским капиллярам плевры.
5
ЛИМФАТИЧЕСКАЯ СИСТЕМА ЛЕГКИХ
Поток лимфы в легочной ткани идет вдоль бронхиального дерева и по ходу субплевральной ткани вдоль плоскости плевры к корню легкого, где расположены лимфатические узлы. Выделяют поверхностную и глубокую сети лимфатических сосудов легких. Поверхностная сеть располагается в висцеральной плевре, глубокая - по ходу бронхов вместе с венами в междольковых, межсубсегментарных, межсегментарных и междолевых прослойках. Поверхностная сеть состоит из капилляров и крупных сосудов, образующих в плевре петли овальной и прямоугольной формы. Глубокая сеть состоит из капилляров и крупных сосудов, снабженных клапанами. В стенках крупных бронхов лимфатические сосуды лежат в два этажа, анастомозируя друг с другом. Есть данные о том, что в альвеолах лимфатических сосудов нет [41], вместе с тем обнаружены мелкие капилляры в перибронхиальной и периваскулярной ткани, примыкающей к ацинусу. При ультраструктурном исследовании выявлено, что лимфатические сосуды (капилляры) ограничены эндотелиальными клетками, которые лежат на электронно-плотном светлом веществе с редкими коллагеновыми волокнами; базальная мембрана в лимфатических сосудах отсутствует. Эндотелиальные клетки фиксированы якорными филаментами [41].
Имеется два основных механизма лимфообращения в интерстициальной среде: 1) свободная диффузия; 2) свободный поток жидкости по градиенту давления (гидростатического и осмотического). Поступление растворов в лимфатические сосуды происходит за счет гидравлического подпора со стороны кровеносных микрососудов, в которых гидравлическое давление выше, а также благодаря повышенному осмотическому давлению в корневых лимфатических сосудах. При нарушении функции лимфатической системы развиваются интерстициальный отек и сосудистая недостаточность, которая реализуется через гидроторакс.
ИННЕРВАЦИЯ ЛЕГКИХ
Иннервация легких осуществляется симпатическими (из II - III шейных и I - V грудных узлов) и блуждающим нервами. За счет ветвей обоих нервов образуется два сплетения - переднее и заднее, которые связаны с аортальным сплетением. Переднее легочное сплетение формируется за счет ветвей блуждающего нерва, отходящих от него на участок между началом возвратного и перегибом блуждающего нерва через бронхи. Перегиб ветви n. recurrens проходит через левый главный бронх, и при сдавлении его могут возникнуть осиплость голоса, частичный парез левой голосовой складки. Эти ветви на передней поверхности бронха образуют сплетения. Симпатические нервы образуют переднее сплетение, отходя от II - III шейного и I грудного узлов, а заднее сплетение отходя от I - V грудных узлов. Они частично входят в состав сплетений, частично самостоятельно проникают в ткань легких. В состав заднего сплетения входит от 3 до 5 ветвей блуждающего нерва.