Эволюция человека. Книга 1. Обезьяны, кости и гены - Марков Александр Владимирович (биолог) 10 стр.


Как секс встраивается в классическую триаду эволюции: изменчивость – наследственность – отбор? Это, если подумать, нечто отличное и от первого, и от второго, и от третьего. Это отдельный фактор, который устанавливает новые отношения между наследственностью и изменчивостью. Он существенно увеличивает пользу от изменчивости, позволяя эволюции работать не с целыми геномами, а с отдельными генами и не с индивидуальными организмами, а с популяционными генофондами. Это резко повышает эффективность отбора. Именно секс превращает биологическое разнообразие на всех его уровнях в мощную адаптивную силу. Но вместе с тем применение этой силы заставляет организмы вырабатывать множество приспособлений, постоянно учитывать именно этот четвертый фактор. Вот уж где сексуальная революция формирует совершенно новые отношения и выдвигает жесткие и специфические требования к приверженцам этих новых отношений. В этой главе мы покажем, для чего нужен и как работает четвертый эволюционный фактор – секс.

Несколько фактов о сексе, которые должен знать каждый

Эукариоты и прокариоты занимаются сексом совершенно по-разному.

Эукариоты практикуют «половое размножение», или, по-научному, амфимиксис. Что бы ни подумал читатель, но это значит, что у них в жизненном цикле присутствует два особых события. Первое – редукционное (т. е. «уменьшающее») деление, или мейоз, при котором из клетки с удвоенным набором хромосом (диплоидной) получаются клетки с одинарным набором (гаплоидные). Клетки, прошедшие редукционное деление, либо сразу становятся половыми клетками (гаметами), как у животных, либо предварительно сколько-то раз делятся обычным способом (митозом) и только после этого дают начало гаметам (так обстоит дело у растений). Второе событие – оплодотворение, или сингамия. При оплодотворении две гаметы, обычно происходящие от разных организмов, сливаются в одну клетку с двойным набором хромосом – зиготу. Зигота снова становится диплоидной, из нее вырастает диплоидный организм, который в какой-то момент путем мейоза начинает производить гаплоидные клетки.

При половом размножении смешивание генов двух родительских организмов, во-первых, взаимное (двустороннее), во-вторых – полногеномное. Отец и мать передают каждой гамете целый гаплоидный геном в одном экземпляре, т. е. ровно по одной копии каждого своего гена. Зигота получает два гаплоидных генома, по одному от каждого из родителей. В ходе мейоза эти два генома перемешиваются, причем весьма тщательно, так что в итоге в каждую гамету попадает более или менее случайная смесь аллелей, полученных данным родительским организмом от своих отца и матери. Соответственно, зигота получит примерно в равных пропорциях аллели обоих своих дедушек и обеих бабушек.

У прокариот (бактерий и архей) все по-другому. Участники полового процесса у них называются не родителями, а донором и реципиентом. Донор – тот, кто отдает часть своих генов и ничего не получает, реципиент – воспреемник чужих генов. Реципиент обретает новый генетический набор и сам становится как бы собственным потомком (а также потомком донора). Эта клетка с новыми генами дает начало своей линии потомков, размножающихся делением и время от времени передающих гены другим особям. Так что обмен генами у прокариот, во-первых, односторонний (от донора к реципиенту), во-вторых, не полногеномный, а фрагментарный, так как передается не целый геном, а лишь отдельные, обычно небольшие фрагменты ДНК.

Существует три разновидности прокариотического секса.

1. Конъюгация, при которой донор активен, а реципиент относительно пассивен. Донор прикрепляется к реципиенту при помощи специального отростка – пилуса (мн. ч. – «пили») и впрыскивает в реципиента немного своей ДНК. Часто этим процессом «руководят» маленькие эгоистичные кольцевые хромосомы – конъюгационные плазмиды. Именно в плазмиде находятся все гены, необходимые для успешной конъюгации, включая гены белков пилуса. Первым делом плазмида перекачивает в реципиента не абы что, а копию самой себя. Часто на этом все и заканчивается. Такие плазмиды ведут себя как настоящие паразиты, используя одних бактерий для того, чтобы попасть в других. Скорее всего, они-то и «изобрели» конъюгацию как средство достижения своих корыстных целей. Однако плазмида может вступить в симбиоз с клеткой-хозяином – ведь, когда он делится, плазмида размножается вместе с ним, поэтому ей выгодно нести в себе гены, полезные для хозяина. Например, часто именно конъюгационные плазмиды распространяют в популяциях бактерий гены устойчивости к антибиотикам. Иногда плазмиды встраиваются в кольцевую хромосому хозяина. В этом случае вместе с плазмидной ДНК реципиент может получить и часть геномной ДНК донора.

2. Вирусная трансдукция. Переходя из клетки в клетку, вирус может прихватить с собой кусочек ДНК прежнего хозяина и встроить его в геном следующего. При трансдукции и донор, и реципиент пассивны. Активен только вирус.

3. Трансформация, при которой донор пассивен (по правде сказать, чаще всего он просто мертв), а реципиент активен. Трансформация – это захват микробами молекул ДНК из окружающей среды. Захваченные фрагменты могут принадлежать мертвым, разрушенным клеткам, но не обязательно: некоторые микробы выделяют ДНК во внешнюю среду еще при жизни. Проглоченная молекула ДНК может быть использована просто в качестве пищи, но может и встроиться в геном реципиента.

Чужие гены встраиваются в геном реципиента двумя способами. Первый способ – «незаконная» рекомбинация. Например, новый фрагмент ДНК может вставиться в хромосому вдобавок к уже имеющимся там генам. Именно так микроб может получить полезный новый ген от неродственного микроба. Такие заимствования могут иметь важные эволюционные последствия, их активно изучают и именно их обычно имеют в виду, когда говорят о горизонтальном переносе генов. Второй способ (гораздо более распространенный, хотя и менее известный, потому что его трудно изучать) – гомологичная рекомбинация. Суть его в том, что фрагмент ДНК донора замещает собой похожий фрагмент ДНК в хромосоме реципиента. Говоря упрощенно, реципиент вырезает из своей хромосомы кусочек и заменяет его похожим кусочком чужой ДНК. Как правило, это происходит при обмене ДНК между близкими родственниками, чьи геномы мало отличаются друг от друга. Если участки ДНК различаются сильно, гомологичная рекомбинация между ними технически невозможна (в гомологичной рекомбинации задействован принцип комплементарности, но мы не будем вдаваться в молекулярные подробности).

Механизм гомологичной рекомбинации – очень древний. Он наверняка был у Луки – последнего общего предка всего живого. Он должен был появиться задолго до Луки, еще на заре РНК-мира. Используется он не только для перетасовки похожих фрагментов ДНК, но и для более очевидной и повседневной задачи, а именно для починки (репарации) повреждений ДНК, таких как разрывы двойной спирали. При этом фрагмент ДНК, гомологичный разрушенному, используется в качестве «заплатки» (да простят нас молекулярные биологи за такое вульгарное упрощение сложного процесса!).

О горизонтальном переносе генов (ГПГ) мы говорили в книге «Рождение сложности». Эволюционная роль этого явления огромна: микробы и одноклеточные эукариоты приобрели множество нужных признаков, заимствуя чужие гены. Геном любой бактерии прямо-таки напичкан явно «неродными», но при этом крайне полезными генами. Один из примеров – появление у цианобактерий способности к кислородному фотосинтезу. Событие, перевернувшее мир, превратившее Землю из унылой бескислородой «планеты микробов» в царство разнообразных, удивительных и сложных «высших» форм жизни. Как оно произошло? Исключительно благодаря горизонтальному переносу. Кислородному фотосинтезу предшествовал фотосинтез бескислородный, более простой, требующий участия одного белкового комплекса – «фотосистемы». Предки цианобактерий умудрились скомбинировать в своем геноме сразу две слегка различающиеся фотосистемы. Одна, вероятно, была у них «своя», а вторую они позаимствовали у другого бескислородного фотосинтетика. Комбинация двух фотосистем в одной клетке позволила цианобактериям перейти к кислородному фотосинтезу – процессу более сложному, но зато и более перспективному. Для бескислородного фотосинтеза требуются дефицитные вещества – доноры электрона, например сероводород или двухвалентное железо. При кислородном фотосинтезе донором электрона служит обычная вода – колоссальное облегчение!

Все это хорошо, но есть одна проблема. То, что мы видим в геномах прокариот, – все эти заимствованные у других микробов полезные гены – не результат ГПГ в чистом виде, а результат комбинации ГПГ и отбора. Мы видим только удачные переносы, потому что неудачные отсеяны отбором. Сколько их было? Точную цифру назвать трудно, но наверняка гораздо больше, чем удачных. Хватать без разбора чужие фрагменты ДНК и встраивать их в свой геном – занятие крайне рискованное. Шанс приобрести что-то полезное при этом ничтожно мал по сравнению с шансами повредить свой геном, испортить важный ген ненужной вставкой или заменой, приобрести что-то несовместимое с имеющимися у вас генами, заполучить смертоносный вирус или активный мобильный элемент, который начнет размножаться и прыгать как сумасшедший и превратит ваш геном в бессмысленную лапшу.

Полезный новый ген у неродственного микроба удается заполучить в среднем лишь раз-другой за миллион лет (примерно такие цифры дал анализ геномов бактерий и одноклеточных эукариот). При этом бесполезные и вредные новые гены доступны в неограниченном количестве. Их можно получать десятками ежедневно.

Естественный отбор не обладает даром предвидения. Он не будет «терпеть» вредный признак (склонность заимствовать чужие гены) миллион лет ради того, чтобы после всех перенесенных мучений приобрести наконец что-то полезное.

Из этого следует, что микробы сохраняют способность к заимствованию генов не потому, что надеются «одолжить» у неродственных микробов какое-нибудь замечательное новшество, новый полезный ген или генный комплекс. Отбор не смог бы поддерживать способность к ГПГ ради такого «журавля в небе». Остается одно из двух. Либо эта способность вообще не поддерживается отбором и является неким «неизбежным злом», либо микробы обмениваются генами по какой-то другой причине: более повседневной и насущной, связанной с какими-то сиюминутными выгодами. Первый вариант маловероятный, отбор умеет сводить «зло» к минимуму, а в природе почти все организмы практикуют генетический обмен. Значит, более осмысленным будет обсуждение второго варианта – выгоды здесь и сейчас. Что это за выгоды? Это мы сейчас и попытаемся выяснить.

Секс против вредных мутаций

Допустим, существует популяция микробов, не умеющих меняться генами (такие организмы называют бесполыми). Допустим, у каждого новорожденного микроба происходит одна вредная мутация. В этом случае популяция обречена на вырождение. С каждым поколением груз вредных мутаций будет расти, а приспособленность – падать. Никакой отбор не сможет остановить накопление мутационного груза, потому что все особи поколения N будут иметь по N вредных мутаций: отбирать некого. Единственное, что сможет сделать отбор, – это замедлить снижение приспособленности, отбраковывая более вредные мутации и сохраняя менее вредные.

Эту идею (в приложении не к микробам с их ГПГ, а к эукариотам с половым размножением – амфимиксисом) разработал великий эволюционный генетик Герман Мёллер (1890–1967). Она вошла в науку под названием «храповик Мёллера». Храповик – это устройство, в котором ось может крутиться только в одну сторону. Имеется в виду, что средняя приспособленность бесполой популяции под действием вредных мутаций может меняться только в сторону ухудшения. Например, если случайно погибнет или мутирует «лучшая» особь в популяции, то эта потеря необратима. Храповик повернулся на один щелчок. Ведь без секса невозможно собрать из пары «плохих» геномов геном получше.

Но если микробы умеют заимствовать чужие гены, то в каждом поколении найдутся счастливчики, которые заменят свой испорченный ген на его неиспорченную версию, взятую у другого микроба, у которого вредная мутация произошла в другом гене. Поэтому в каждом поколении, несмотря на мутагенез, какая-то часть особей окажется свободной от вредных мутаций. Их-то и поддержит отбор, они-то и оставят больше всего потомков. При достаточно мощном отборе популяция сумеет избежать вырождения.

Идею можно выразить иначе. Если у бесполого организма возникает вредная мутация, его потомки уже не смогут от нее избавиться. Она будет, как родовое проклятие, передаваться всем его потомкам вечно (если только не произойдет обратная мутация, что крайне маловероятно). У бесполых организмов отбор может отбраковывать только целые геномы, но не отдельные гены. Сойдут с арены те несчастные, которым совсем не повезло, а останутся те, кого мутационная судьба в этот раз пощадила (при этом вместе с вредной мутацией может исчезнуть и редкий полезный признак). Но и они окажутся хуже, чем их родители, просто их мутации не такие зловредные. Поэтому в череде поколений бесполых организмов вредные мутации могут неуклонно накапливаться. Храповик Мёллера – это настоящая трагедия отцов и детей: отцы могут справедливо сетовать на падение нравов.

Но если организмы размножаются половым путем (или хотя бы изредка практикуют ГПГ с гомологичной рекомбинацией), то индивидуальные геномы иногда перемешиваются. Новые геномы при этом собираются из фрагментов, ранее принадлежавших разным организмам. В результате возникает новая сущность, которой нет у бесполых организмов – генофонд популяции. Гены получают возможность размножаться и выбраковываться поодиночке, независимо друг от друга, а не в неразрывной связке с другими генами данного генома. Отбор получает возможность отделять зерна от плевел: ген с неудачной мутацией может быть отсеян отбором, а остальные гены данного родительского организма могут при этом сохраниться в генофонде.

Таким образом, секс помогает отбору очищать генофонд от постоянно возникающих вредных мутаций, тем самым спасая популяцию от вырождения.

Секс в защиту полезных мутаций

С полезными мутациями ситуация очень похожая. Допустим, в популяции бесполых микробов возникло две полезные мутации. У одного микроба произошла полезная мутация в гене А, у другого – в гене Б. Что будет с потомками удачливых мутантов?

Поскольку обе мутации полезны, потомки мутантов будут размножаться быстрее прочих особей (мы не рассматриваем усложненный вариант, когда оба полезных признака отягощены букетом других мутаций разной степени вредности). Каждый мутант даст начало быстро размножающемуся клону. В конце концов все немутанты будут вытеснены и в популяции останутся два успешных клона: один с мутацией в гене А, другой с мутацией в гене Б. Пока все идет не так уж плохо (с точки зрения «пользы» для популяции).

Дальше начинаются неприятности. Поскольку микробы бесполые, объединить обе мутации в одном геноме они не в силах. Вместо этого начнется конкуренция между двумя клонами, или, по-научному, клональная интерференция. Тот клон, чья мутация оказалась более полезной, в итоге победит, а второй клон (тот, чья мутация оказалась менее полезной) будет вытеснен, т. е. попросту исчезнет. Таким образом, из двух полезных мутаций зафиксируется только одна. Вторая будет утрачена, хотя ее очень жаль терять!

Неэффективность налицо. Бесполая популяция – весьма несовершенная «машина для эволюции». А все потому, что она даже и не популяция в полном смысле слова. Это свора изолированных клонов, жестоко конкурирующих друг с другом.

Но если мы предоставим нашим микробам возможность заимствовать чужие гены, то какой-то мутант с улучшенным геном А рано или поздно позаимствует у микроба из другого клона улучшенный ген Б (или наоборот). В результате появится микроб с обеими полезными мутациями вместе. Его-то потомки и унаследуют мир. Польза ГПГ очевидна, не правда ли? Поэтому если смотреть на проблему отцов и детей глазами эволюциониста, то она легко решается с помощью секса.

Секс делает все полезные мутации, возникшие в популяции, «общим достоянием». Поэтому скорость приспособления к меняющимся условиям у организмов, способных к сексу, должна быть выше, чем у бесполых. Эту идею первыми разработали в 1930-х годах уже упоминавшийся Герман Мёллер и другой гениальный генетик-эволюционист Рональд Фишер (1890–1962). Она так и называется – эффект Фишера – Мёллера.

Назад Дальше