Аргонавты Вселенной (илл. Г.Малакова) - Владимир Владко 13 стр.


Оказывается, наука и техника до последнего времени не могли осуществить пассажирское межпланетное путешествие потому только, что не существовало нужного горючего для ракеты. Можно было отправить снаряд «Луна-1» и даже корабль «Луна-2», облетевший вокруг Луны и возвратившийся на Землю. Но пассажирский межпланетный корабль — совсем другое дело.

Ведь каждый пассажир — это не только его вес, но и вес продуктов питания и многочисленных аппаратов, которые должны обслуживать человека в пути. Каждому пассажиру нужно в день никак не меньше 600 граммов еды — это минимум. Сколько же пищи приходится везти с собою в астроплане трем путешественникам, летящим на Венеру и обратно?.. Какой это огромный груз!

Значит, какую массу горючего сожжет ракета, нагруженная таким образом! Ведь корабль должен не только подняться с Земли и развить космическую скорость, но потом и вторично взлететь с поверхности Венеры. И здесь получается что-то похожее на заколдованный круг.

Межпланетный корабль должен везти в своих баках очень много горючего — и поэтому его общий вес увеличивается. Но тогда для его разгона нужно тратить еще больше горючего и снова увеличивать емкость баков. А чем больше баки, тем больше надо горючего для разгона корабля — и так без конца! Выходит, что за счет топлива взлетный вес корабля становится огромным и главная часть топлива нужна, по сути, только для того, чтобы разогнать до огромной скорости это самое топ. ливо. Где же выход? Как уменьшить запас топлива, необходимого для полета? Это и было главной задачей многих ученых и конструкторов в течение десятков лет.

— Конечно, у них была своя путеводная звезда, — сказал Николай Петрович, рассказывая мне обо всем этом. — Великий основоположник реактивной техники и звездоплавания Циолковский оставил науке свою знаменитую формулу, по которой можно определить запас горючего для межпланетного корабля. По этой формуле конечная скорость любой ракеты (значит, и астроплана, пользующегося ракетными двигателями) зависит от той скорости, с которой продукты сгорания (газы) вытекают из двигателя, и от того, какую долю общего веса корабля при взлете составляет вес топлива. Чем больше скорость истечения газов, тем меньше можно взять топлива.

Итак, вес топлива можно было определить по формуле Циолковского, но от этого конструкторам не становилось легче.

— Я бы на их месте давно пришла в отчаяние и бросила все дело, — честно призналась я Николаю Петровичу.

— Это потому, милая Галя, — ответил он, — что у вас нет еще нужных для ученого настойчивости и терпения.

Настойчивость и терпение! Звучит это очень красиво, но… нет, надо объяснить, в чем тут было дело, какие трудности стояли перед конструкторами!

Чтобы победить земное притяжение и достигнуть Венеры, астроплан должен развить колоссальную скорость — 11,5 километра в секунду. Это известно всем. Если перевести эти цифры на более понятный язык, то выйдет, что астроплан должен лететь со скоростью свыше 40 000 километров в час, — значит, он мог бы за один такой час облететь всю Землю по экватору! Неплохая скорость!

Но, оказывается, если делать расчеты только по одной этой скорости, то из путешествия ничего бы не вышло. И вот почему.

Взлетая с Земли, корабль должен преодолеть сопротивление воздуха — затратить дополнительное горючее; это раз. Горючее необходимо и для торможения астроплана при посадке на Венеру, иначе он просто разобьется; это два. Второй взлет, уже с поверхности Венеры, — снова топливо; это три. Торможение при посадке на Землю — опять топливо; это четыре. Ну, и некоторый запас горючего на непредвиденные случайности, вроде нашего столкновения с метеоритом; это пять.

Если бы все горючее, которое астроплан должен иметь в своих баках (на два взлета, две посадки, управление в пути и резервный запас), израсходовать на разгон корабля в безвоздушном пространстве, где нет сопротивления воздуха, то межпланетный корабль развил бы так называемую «идеальную» скорость. Не 11,5 километра в секунду, а около 30 километров в секунду. Такую скорость и клали в основу своих расчетов конструкторы…

— И многие из них, как и вы, Галя, в отчаянии хватались за голову: положение казалось действительно безвыходным, — добавил, улыбаясь, Николай Петрович. — Понятно, что еще в пятидесятых годах нашего столетия межпланетное путешествие было несбыточным…

Осложнение заключалось в том, что в те времена скорость истечения газов из жидкостных ракетных двигателей не превышала трех километров в секунду. А при таком условии, как показывает все та же знаменитая формула Циолковского, для достижения скорости астроплана в 30 километров в секунду нужен был совершенно фантастический запас топлива. Вес топлива при взлете должен был превышать вес самого астроплана — в 22 000 раз! Конечно, при таких условиях полет был просто немыслим.

Конструкторы придумывали массу обходных путей для того, чтобы уменьшить запас топлива при взлете. Еще сам великий Циолковский выдвигал идею о взлете астроплана не с Земли, а с ее искусственного спутника — вроде наших «Диск-1» и «Диск-2». Если астроплан взлетел бы с такого искусственного спутника, то ему не надо было бы преодолевать сопротивление воздуха да и земное тяготение было бы меньше, значит запас топлива сильно уменьшился бы, а главное — можно было бы использовать большую скорость спутника. Но пока такая идея неосуществима, искусственные спутники еще слишком маленькие, они не годятся для роли межпланетных вокзалов…

Была и другая идея — создание ракетных поездов, составных ракет. В таком поезде задняя ракета служит для взлета в земной атмосфере. Она толкает переднюю ракету, двигатели которой пока не работают, разгоняет ее, а потом, когда запас горючего задней ракеты израсходовался, она отваливается от первой ракеты и падает обратно на Землю. А первая летит дальше: она получила уже некоторую скорость, прошла плотные слои атмосферы — и ее ракетные двигатели начинают работать в условиях почти безвоздушного пространства. Но и эта идея оказалась иока что практически не осуществимой для нашей цели, хотя при отправлении мы использовали кое-что от нее: я говорю о ракетной тележке, которая вынесла межпланетный корабль в разреженные верхние слои атмосферы при старте с Земли.

Но все это было неполным решением вопроса. Оставался только один реальный путь: искать горючее, у которого скорость истечения газов была бы значительно большей. Над этим конструкторы и изобретатели бились много лет.

— Они достигли больших успехов, но всего этого было мало для межпланетных путешествий, — говорил Николай Петрович. — Для земных перелетов новые виды горючего оказались превосходными, а для космических — все еще слабыми…

Что касается земных перелетов, то тут все обстоит хорошо, это я сама знаю. Сейчас ракетопланы и стратопланы летают с такой скоростью, которая и не снилась в пятидесятых годах. Ракетоплан Москва — Пекин, например, покрывает весь путь всего за полчаса!

Я сказала об этом Николаю Петровичу. Он подтвердил:

— Да, да, это так. Скорость истечения газов у ракетопланов повысилась до 4-5 километров в секунду. Это большое достижение техники. Но разве такая скорость могла бы удовлетворить конструкторов межпланетного корабля? Конечно, нет.

И вот, когда, казалось, были исчерпаны все возможности, когда ученые убедились, что из обычного горючего нельзя выжать большей скорости истечения газов, на помощь пришла советская атомная техника. Два научно-исследовательских института — Ленинградский и Киевский институты физической химии — почти одновременно разработали новые типы атомного горючего. Один из них, атомит, вывел конструкторов межпланетных кораблей из безнадежного тупика: межпланетное путешествие стало реальностью!

Новое изумительное атомное горючее, изобретенное советскими учеными, дало возможность сконструировать ракетные двигатели, в которых газы вытекают со скоростью 12 километров в секунду. Атомит оказался волшебным ключом к двери в межпланетное пространство (это не я придумала такое красивое сравнение, так сказал Николай Петрович!).

На нашем астроплане установлены именно такие ракетные двигатели. Что это дало?

Раньше, до изобретения атомита, вес топлива должен был бы превышать вес корабля в 22 000 раз. А при атомите вес топлива превышает вес корабля всего примерно в 12 раз.

— Но не следует думать, — говорил Николай Петрович, — что конструкторов нашего астроплана радовало такое соотношение. Конечно, 1:12 совсем не похоже на прежнее 1:22 000, однако и оно создавало огромные трудности для конструкторов… Вы держали когда-нибудь в руках, Галя, обыкновенную, самую простую железную садовую лейку для воды? — спросил меня Николай Петрович.

— И даже воду в ней носила, поливала грядки, — удивленно ответила я. — Но при чем тут лейка?

— А вот при чем. Самая обыкновенная лейка для воды весит всего только в 7 раз меньше, чем налитая в нее вода. Лейка и вода дают соотношение 1:7. У нас, в нашем корабле, соотношение между весом астроплана — со всеми его механизмами, оборудованием и пассажирами — и весом горючего достигает 1:12. По отношению к весу горючего астроплан должен быть легче, чем лейка по отношению к налитой в нее воде. Понимаете?

— Но как же можно было этого достичь? — еще больше поразилась я.

Николай Петрович пожал плечами:

— Конструкторы выполнили свою задачу, вот и все. Трудности, видите ли, существуют, по-моему, только для того, чтобы их преодолевать. Этим же заняты, между прочим, и мы с вами…

1. Три пассажира — 210 килограммов.

2. Запас продуктов (туда и обратно для округления по 200 дней, а всего на дорогу — 400 дней; пребывание на Венере — 465 дней; всего продуктов на 3 человека по 1 килограмму в день — 2595 килограммов, да еще резервный запас в 405 килограммов) — 3000 килограммов.

3. Воды — 1000 килограммов (почему так мало воды — я уже рассказала).

4. Жидкого кислорода — 500 килограммов (ведь и кислород тоже частично возвращается из продуктов дыхания, так что нужна очень маленькая добавка). Всего — 4710 килограммов.

К этому нужно добавить еще очень многое: установки для очистки и переработки воздуха, ля отопления, охлаждения; конденсаторы; энергетическая система в стенках корабля; одежда; скафандры; посуда; аптечка; разные инструменты и приборы; радиостанция; радиолокаторы; кино- и фотоаппараты; оружие и припасы для него; справочники; почтовые ракеты (о них я расскажу потом) и разное мелкое оборудование. Все это весит более 5 тонн — очень мало, если учесть, сколько необходимо взять с собой для продолжительного межпланетного путешествия.

Ну, и еще я. Во мне веса только 56 килограммов, совсем пустяки. Конечно, продукты приходится тратить и на меня… но это я уже о другом заговорила. Не буду отвлекаться на неинтересные темы!

Итак, 10 тонн полезного груза при 40 тоннах веса самого корабля и 600 тоннах веса топлива — это, всякий согласится, не очень выгодное соотношение. Мы путешествуем как бы на огромной цистерне с горючим!.. Но и такое соотношение даже не снилось людям, жившим в то время, когда не был еще изобретен атомит.

А теперь об атомите и наших двигателях.

Вся центральная и задняя часть астроплана представляет собою огромный склад атомного горючего. Атомит — это темно-бурая маслянистая жидкость, которая не замерзает даже при самых низких температурах. И, кроме того, он почти совершенно лишен вязкости: атомит сверхтекуч, он свободно просачивается через любые фильтры, какими бы мелкими ни были их поры. Это очень важно!

Атомит сохраняется в баках, из которых по тонким трубкам поступает под давлением в камеры сгорания. Их у нас три: одна центральная, в хвостовой части астроплана, и две маленькие — на концах крыльев. Центральная камера — мощный двигатель, который разгоняет корабль, а две маленькие служат для управления — для поворотов и маневрирования в межпланетном пространстве.

В атмосфере и стратосфере управлять астропланом можно при помощи стабилизаторов, — это вроде таких плавников на хвостовой части корабля, они действуют совсем так, как руль в воде. Но ими пользоваться можно только там, где есть атмосфера, — над Землей или над Венерой. А в межпланетном пространстве стабилизаторы бессильны. Здесь кораблем управляют при помощи небольших боковых двигателей.

Допустим, нам надо повернуть направо. Если мы находимся в лодке, обыкновенной речной лодке, то для этого достаточно сильнее нажать на левое весло — и лодка повернется направо. Примерно так и с нашими маленькими ракетными двигателями. Если мы хотим повернуть ракетный корабль направо, то приводим в действие левый двигатель. Он толкает левую часть корабля и поворачивает его направо. Очень просто!

Назад Дальше