Казнь СССР – преступление против человечества - Мухин Юрий Игнатьевич 19 стр.


Понимай!

В своей жизни я встретил столько дубин с дипломами об окончании вузов, что прямо-таки считаю своим долгом дать хотя бы один совет тем, кто хочет такую штуку получить. Дело не в том, что у меня «красный диплом», т. е. диплом с отличием – это, по сути, чепуха, а дело в том, что я умудрился вместе с дипломом вынести из института и кое-какие знания, которые пригодились мне (и до сих пор они не лишние) в дальнейшей работе и жизни. А вот это, как я понимаю, не часто случается.

Поэтому давайте поговорим о моих достоинствах, которые (и это абсолютно точно) – продолжение моих недостатков. Поскольку речь будет идти о моих учебе и работе, а не о моих моральных устоях, то главным своим недостатком в этом плане я вижу плохую механическую память. Это надо понимать так, что я плохо запоминаю то, что нужно просто запомнить. К сожалению, я это понял очень поздно, иначе не стал бы после института терять год на спецкурс по изучению английского языка. Это – не мое! Просто так запоминать большой объем слов, которые остаются просто словами, мне трудно, и я такую информацию быстро забываю. Причем такое впечатление, что забываю навсегда. Это довольно неприятно, когда речь идет о людях, с которыми я познакомился и даже какое-то время чем-то занимался и которых потом я не могу вспомнить даже после не очень длительного промежутка времени.

Поэтому мне достаточно легко давалась и дается учеба только в случае, если я понимаю, чему меня учат, если я образно могу представить себе то, о чем речь, если я вижу, как данные знания применяются там, где их можно использовать. Между прочим, такие знания я тоже довольно быстро забываю, но штука в том, что я так же быстро вспоминаю их тогда, когда они требуются. Причем я вспоминаю их не механически – не по каким-то ключевым словам – не так, как извлекает из своей памяти информацию компьютер, а по принципиальным положениям той ситуации, в которой эти знания нужны. Чтобы не запутывать тему, из своей производственной практики пример того, о чем я только что написал, дам потом, а сейчас несколько забавных случаев из моей учебы в институте.

Вообще-то с математикой у меня никогда проблем не было, хотя, пожалуй, это та наука, где нужно много запоминать механически. Однако математику в моем случае спасало огромное количество задачек, которые нужно было решить в ходе обучения, а решать задачки мне всегда нравилось – это интересно. Однако без понимания сути того, что делаешь, решать задачки трудно, поэтому и в математике у меня были успехи именно потому, что я понимал суть формул, а не просто запоминал их. Вот, к примеру, бином Ньютона, т. е. формула того, чему равняется степень суммы двух чисел. Я и сейчас этой формулы не помню, но чему равно (a+b)2 или (a+b)3, напишу немедленно, поскольку сам выведу эту формулу, перемножая в одном случае (a+b) на (a+b), а во втором (a+b) на (a+b) и на (a+b). А в физике ещё легче. Мне нет нужды, к примеру, запоминать формулу второго закона Ньютона, я просто представляю себе, что мне нужно разогнать стоящую на рельсах тележку. От чего будет зависеть та сила, которая мне потребуется для этого? Чем скорее я её разгоню, т. е. чем больше буду придавать ей ускорение, тем большая сила от меня потребуется. И чем тяжелее будет тележка (чем больше будет её масса), тем большее усилие мне придётся приложить. Ну и много ли тут ума надо, чтобы самому сформулировать: сила равна произведению массы на ускорение?

Но вернемся к математике в институте. Ее нам читала Масаковская, как я сейчас понимаю, читала плохо – сухо, равнодушно, неинтересно. Может, я не прав, и все зависело от моего разгильдяйства, но мне на ее лекциях было очень скучно – я не улавливал сути того, о чем она говорила, а механически записывать ее слова в конспект было очень неинтересно. Спасали практические занятия, т. е. необходимость решать задачки, и думаю, что именно благодаря им я два семестра все же сдавал Масаковской математику на четверки. В третьем семестре все было как в предыдущих, и вот как-то решаю я домашнее задание и что-то плохо у меня получается. Я уже забыл суть, по-моему, надо было взять интеграл, а для этого выполнить алгебраические преобразования до вида табличного интеграла. А я хотя и пытался заучить табличные интегралы, но хорошо их не помнил и, как я потом понял, просто не замечал, когда в ходе алгебраических преобразований получал нужный результат. А при интегрировании получается и некая постоянная «С», сути я ее не понял и только запомнил из объяснений Масаковской, что эта «С» может быть любым числом. «А что, – думаю, – если я вместо «С» поставлю нужное для алгебраического преобразования конкретное число?» Поставил, то ли 1/2, то ли 2, не помню, преобразовал выражение уже вместе с этим числом, взял интеграл, посмотрел в ответы – сходится. Решаю таким образом второй пример, третий – ответы сходятся. На мою беду, или на мое счастье, мое домашнее задание никто в институте не проверил, и я пребывал в наивной уверенности, что решил эти задачки правильно.

Мне уже 59-й, и я могу на Библии поклясться, что чем дальше идет жизнь, тем в общественном плане она становится глупее и глупее. И уже в мое время это оглупление (а вызвано оно обюрокрачиванием общества) нарастало заметно. Я начал учиться в институте, когда преподаватели были, на мой взгляд, еще достаточно свободны, и они могли использовать эту свободу, чтобы хоть чему-то научить студента. Ректором у нас был старенький Исаенко, и при нем дело с этим обстояло так.

Если, по мнению преподавателя, студент знал явно меньше, чем на «удовлетворительно», то преподаватель возвращал ему чистую зачетку и предлагал прийти в другой раз. Никаких допусков к переэкзаменовке не требовалось. Попытки сдать экзамен можно было делать до бесконечности, у нас были упрямцы, которые сдавали какой-нибудь экзамен по году, и ходили они его сдавать раз 18–20. При таком подходе к делу преподаватель добивался, чтобы студент действительно выучил его дисциплину, а студента стимулировало отсутствие стипендии в период, пока у него есть задолженность.

А потом мудрецы решили «усилить дисциплину» и где-то в конце моей учебы ввели, что для пересдачи экзамена с двойки нужно было взять в деканате официальный допуск, причем количество допусков ограничивалось пределом, за которым студента отчисляли из института. И в какое положение попали преподаватели? Если они пару раз не поставят студенту оценку, то того выгонят из института, а кого тогда учить, за что деньги получать, если студентов не будет? Кроме того, получается так, что это преподаватель виноват, так как в ходе семестра не сумел студента научить. Другие ему поставили тройки – значит, сумели, а ты ставил двойку – не сумел. Раньше это было чем-то вроде личного дела между студентом и преподавателем, а теперь оно приобрело официальные и очень неприятные формы, скорее, даже для преподавателя, нежели для студента. И стали преподаватели не выгонять бездельников с экзамена, заставляя их хоть что-нибудь выучить, а ставить им тройки. Кто от этого «укрепления дисциплины» выиграл?

Экзамены

Но я, слава богу, учился еще до этого маразма, и были тогда в ДМетИ оригиналы-преподаватели, которые гоняли нашего брата-студента как сидоровых коз. Нам из этих оригиналов досталось двое, но, правда, очень оригинальных – заведующий кафедрой сопротивления материалов профессор Павленко и доцент кафедры теплотехники Аверин. Но о них позже. А с математикой нашей группе повезло с Масаковской, поскольку на этой кафедре был, по-моему, доцент Кисель. Этого студенты тоже боялись как огня.

И вот наступила сессия после третьего семестра, готовлюсь я к экзамену по математике, чувствую себя в ней не ахти как, но не особо боюсь, поскольку Масаковская и экзамены принимала как-то равнодушно, – авось, думаю, опять как-нибудь отхвачу у нее четверку. Бодренько прихожу на экзамен и еще издалека вижу, что у аудитории как-то много народу толпится. Выясняю, что Масаковская заболела, и что экзамен у нас будет принимать Кисель, и что толпа студентов не из нашей группы – это жертвы Киселя, которых он уже успел выгнать с экзамена и которые теперь пришли на очередную попытку. Ну, думаю, влип! Теперь, думаю, и тройку придется обмывать, как орден.

Захожу, взял билет, сел. Кисель принимал экзамен вдвоем с ассистентом, их столы были сдвинуты. Ну, думаю, есть шанс – надо попасть к ассистенту. Начинаю готовиться и слушаю, как принимает экзамен Кисель, а делал он это не как все. Все сначала слушают ответ студента на теоретические вопросы в билете, а потом смотрят, как он решил примеры, а Кисель, наоборот, – начинает с примеров и, если там ошибка, то выгоняет беднягу, не слушая ответов по билету. По сути он прав – если не умеешь применить математику на практике, то кому нужны твои теоретические знания? Прав-то он, может, и прав, но бедному студенту от этого не легче.

Что-то я по вопросам в билете вспомнил и написал, начинаю решать задачки, и первая из них такая, какие я решал доморощенным способом. Ну я ее так и решил. Решил как-то и остальные и затаился. Смотрю – удобный момент: ассистент взял зачетку, чтобы вписать оценку, а Кисель только выгнал студента, и к нему сел очередной. Я мигом подскакиваю к ассистенту, а тот вписывает оценку в зачетку так медленно, как малограмотный. Кисель же в это время трах-бах почиркал задачки и отпустил жертву, а я, как дурак, уже стою и изображаю готовность сдать экзамен. Ну он, само собой, и показал мне властным жестом, что нужно садиться к нему. Берет у меня листок с решенными примерами и сразу же:

– Это что за двойку ты здесь намалевал?

– Это я вместо «С».

– Что?! Да ты понимаешь, что такое «С»? Как ты вообще с такими знаниями посмел явиться на экзамен?

Но я уже был не салага-первокурсник, меня так просто с экзамена не выкинешь.

– А я именно таким способом решал эти задачи и раньше, и решение у меня всегда сходилось с ответом.

– Чепуха! – и двигает ко мне мою зачетку.

И вот тут случилось то, в чем я, как полагаю, силен. Поскольку я все же из-за решения задач понимал эту часть математики, то вспомнил тот табличный интеграл, который мне был нужен, – в мозгу моментально всплыло, как правильно этот пример нужно решить. Я беру у Киселя свой листок, разворачиваю к себе и начинаю под своим неправильным решением решать правильно. И что поразительно – я не только получил тот же ответ, но случилось и то, чего я не ожидал, – мое дурацкое решение оказалось короче правильного! И я говорю Киселю:

– Вот видите: мой способ гораздо эффективнее вашего!

Было очевидно, что я ошарашил Киселя, он сбавил тон, начал искать у меня ошибки в алгебраических преобразованиях, но их не было, начал объяснять мне смысл этой постоянной «С», говорить про то, что совершенно дико и неправильно заменять её произвольным числом, поскольку это число определяется при решении конкретных, практических задач. Мы поменялись ролями, теперь не он мне, а я ему задал вопрос, на который у Киселя не было ответа. Теперь мне впору было выгонять его с экзамена, поскольку, как ни крути, но не может быть совершенно неправильным способ, который даёт правильный результат! Кисель не стал больше ни о чём меня спрашивать, он взял мою зачётку и вписал «отл.».

По сей день я не знаю, разобрался ли Кисель в том, что произошло, – в том, почему при всей глупости моего решения ответ получался правильным, а решение – короче? Мне-то это было уже «по барабану». Получить у Киселя «5» – это было ого-го!

Не знаю, то ли инстинктивно, то ли в силу какого-то природного любопытства, но я в институте стремился понять те лекции, которые нам читали. Из-за близорукости я сидел обычно на передней парте и никогда не стеснялся перебить преподавателя и попросить его объяснить то, что мне было непонятно. Должен сказать, что помню только одного, который был этим недоволен, но он был молод и, думаю, что и сам по-настоящему не понимал, что читает. Остальные же преподаватели относились к этому очень спокойно и даже благожелательно.

(Спустя много лет я сам читал лекции бригадирам и понял, как тяжело это делать молчащей аудитории. Ведь не имеешь обратной связи и не понимаешь, в чем дело, – то ли ты так хорошо читаешь, что всем все понятно (чего быть не может), то ли ты читаешь так плохо, что тебя вообще никто не понимает и все тихо дремлют?)

Помню случай с профессором Павленко, мне он помнится крупным, седым стариком, который вечно ходил, как апостол Петр, со связкой ключей. На экзаменах тоже зверствовал, одному студенту нашей группы за наглость зачетку выбросил в форточку, и тому пришлось искать ее в сугробах, правда, кафедра сопромата была на первом этаже, и далеко зачетка не улетела. Сижу у него на лекции, он на доске выводит какую-то формулу и объясняет, откуда что берется.

Вроде все понятно, я записываю, и вдруг после третьего или четвертого преобразования у него неизвестно откуда появляется коэффициент «7». Он продолжает преобразования и снова пишет этот коэффициент. Я бросил писать и спрашиваю:

– А откуда это у вас взялась семерка? – Павленко разворачивается, бросает мел на стол и, обращаясь к аудитории, гремит: – Балбесы! Вы что это переписываете с доски, не понимая что! Слава богу, что нашелся хоть один, который следит за мыслью и пытается меня понять!

Хорошо, что я успел его спросить, а то бы он и меня в балбесы записал. Я получил по сопромату пятерку, хотя уже не помню, сдавал ли я его Павленко или его ассистенту.

А с Авериным было совершенно по-другому. Ветеран войны, инвалид, читал он лекции хорошо, пытаясь донести до нас свой непростой предмет – теплотехнику. Вопросы ему можно было задавать в любое время лекции – отвечал он охотно. И вот однажды он выводит на доске какую-то формулу, я записываю череду символов и вдруг перестаю понимать смысл сделанного им преобразования. Я был уверен, что тот интеграл берется не так, но вместо того, чтобы спросить, почему он взял его по-другому, бросил записывать дальнейший вывод и записал только конечную формулу. Перед экзаменом Аверин сообщает нам, чтобы мы не трудились писать шпаргалки, поскольку он на экзамене разрешает пользоваться всем, чем угодно, – конспектами, учебниками и т. д. Кроме того, он объявил, что в качестве дополнительного вопроса он задаст один из двух: расчет тяги дымовой трубы или расчет производительности методической печи, при этом он написал на доске необходимые уравнения. Мы уже знали, что сдать Аверину экзамен очень непросто, и в его послаблениях видели какой-то подвох, но не понимали, в чем он.

Готовлюсь к экзамену и отмечаю, что у меня в конспекте оборвана запись вывода одной из формул, пытаюсь вывести сам – не могу. Ну, думаю, это всего лишь один из 70–80 вопросов, содержащихся в билетах. Какова вероятность, что он выпадет? У меня была привычка тянуть с подготовкой к любому экзамену до последнего вечера, с него я начинал и заканчивал в 4–5 часов ночи, с теплотехникой тоже так получилось. Прихожу на экзамен с распухшей головой, Аверин приглашает первых. А я имел примету – никогда не идти на экзамен ни первым, ни последним. Заходят 6–7 человек первых, берут билеты, и Аверин уходит с кафедры, пообещав вернуться через полчаса. Действительно, в его отсутствие можно было переписывать с чего угодно, разложить билеты так, чтобы взять нужный, ребята выходили в коридор советоваться, короче, как будто знали всё, что надо. Минут через 40 вернулся Аверин, начал принимать экзамен и бах-бах-бах – все первые вышли с двойками. Ну, ничего себе! Что же ему надо? Народ жалуется, что Аверин всех валит дополнительными вопросами, но как, если он обещал задать один?

Захожу, беру билет, и надо же какая подлянка – попадает именно тот, где у меня не дописан вывод! Сел, смотрю – все книги и конспекты под партами держат, а я свой вынул и начал открыто листать, но что толку – этот вывод за ночь сам по себе не появился. Аверин заметил мое чуть ли не демонстративное листание конспекта и спрашивает:

– Что, чего-то в конспекте нет?

– Да нет, Сергей Иванович, – отвечаю я, – в Греции все есть.

Смотрю, как он принимает экзамен, и понимаю, в чем дело. Садится к нему студент, Аверин берет у него написанные ответы, равнодушно просматривает и откладывает в сторону, не спрашивая. После этого задает свой дополнительный вопрос, и тут начинается то, о чем Аверин, правда, тоже предупреждал перед экзаменом. Он начинает спрашивать смысл всех величин, входящих в уравнение дополнительного вопроса, требует написать уравнения того, как они получаются, а потом физический смысл и входящих в эти уравнения величин. В результате нужно написать штук 20 формул и по сути продемонстрировать знание принципиальных основ всего начитанного им курса теплотехники.

Назад Дальше