Сегодня роль дефицита СО2 в развитии многих болезней изучена достаточно хорошо, и один из способов их лечения, созданный на основе этих знаний, воплощён в методе ВЛГД (волевой ликвидации глубокого дыхания) и дозированной физической нагрузки. В частности, при лечении бронхиальной астмы методом Бутейко, результатом применения комплекса будет то, что постепенное повышение процентного содержания СО2 в воздухе лёгких будет способствовать быстрому устранению гиперсекреции и отёка слизистой оболочки бронхов и снижению повышенного тонуса гладких мышц стенки бронхов.
Более того, по словам создателя метода ВЛГД и его многочисленных последователей, через некоторое время повышение СО2 до определённой величины приводит к стиханию аллергического воспалительного процесса в бронхах и практически полному устранению клинических проявлений астмы. Причём поддержание нормального уровня СО2 в среднем около полугода приводит к полному завершению аллергического воспалительного процесса в бронхах, разрушению рефлекторного механизма развития спазма бронхов, что делает невозможным развитие приступов удушья ни при каких условиях, даже при условии искусственного создания дефицита СО2 в лёгких. Для повторного формирования рефлекторного механизма спазма бронхов, по их мнению, потребуется в среднем 10÷15 лет, что является гарантированным сроком клинической ремиссии.
Следует иметь в виду, что альвеолярная гипокапния (снижение парциального давления СО2) является результатом не только лёгочной гипервентиляции, но в большей степени – следствием гиподинамии и снижения активности общего обмена веществ. Задержки дыхания позволяют не только устранить избыточность общей вентиляции лёгких, но и повысить активность метаболизма, что значительно ускоряет процесс устранения дефицита альвеолярного СО2.
Похожие выводы о целебном воздействии углекислого газа на живой организм сделаны и в других работах [15–22], среди которых можно отметить книгу Мишустина Ю.Н. [23], посвящённую, в основном, излечению заболеваний сердечно-сосудистой системы. Приведём некоторые положения этой книги ввиду важного обобщающего их характера.
«…Известно, что сужение микрососудов тела приводит к уменьшению кровотока в органах (нарушению регионарного кровообращения), то есть к нарушению нормального кровоснабжения их тканей – ишемии. А на уровне клеток ишемия ведёт к их кислородному голоданию (гипоксии тканей). Из-за нехватки кислорода клетки перестают выполнять свои функции в полном объёме. Острый же дефицит кислорода приводит к массовой гибели клеток – инфарктам органов, причём не только сердца (инфаркт миокарда) или головного мозга (ишемический инсульт), но и других органов. У здорового (как правило, относительно молодого) человека нормальный просвет микрососудов постоянно поддерживается за счёт поддержания организмом нормальной концентрации растворенного в крови углекислого газа. Это вещество постоянно вырабатывается в каждой клетке организма как конечный продукт (наряду с водой Н20) окисления углеводородов (в основном глюкозы). CО2 в конце концов выделяется из организма через лёгкие. Но на пути к лёким углекислый газ некоторое время находится в крови, играя при этом роль естественного регулятора просвета микрососудов, то есть сдерживая их сужение. Таким образом, можно считать установленным, что нормальная концентрация CО2 в артериальной крови – залог отсутствия стойкого повышенного артериального давления (АД), нередко сопровождающегося кардионарушениями.
Простой способ снятия приступов головной или сердечной боли заключается всего лишь в искусственном, волевом сдерживании дыхания в течение нескольких минут. Головная или сердечная боль снимается вследствие расширения микрососудов, поскольку их расширение приводит к снижению нагрузки на сердце и артериального давления.
Извне в организм ничего не вводится, значит, на стенки артериол аналогично папаверину подействовало вещество, производимое самим организмом. Это вещество – углекислый газ.
Стоило увеличить содержание в крови CО2 – артериолы расширились. А пока углекислого газа в крови было "мало", артериолы были сужены – имели хронический повышенный тонус.
Есть ещё один простой опыт, подтверждающий этот результат [11]. Делаем несколько очень глубоких вдохов и выдохов до тех пор, пока…"не закружится голова". Избыточное дыхание приводит к уменьшению концентрации в артериальной крови CО2. Вследствие этого происходит сужение артериол головного мозга, вызывающее ишемию мозга. Головокружение – результат нехватки кислорода».
Что касается газообмена, то он не ограничивается только кислородом и углекислым газом, а касается обмена и других газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступают, кроме кислорода, потребляемого всеми клетками, органами и тканями, – азот, небольшое количество СО2 и других атмосферных газов. Из организма выделяются образующийся в нём углекислый газ, парообразная вода, некоторое количество кислорода и газообразные продукты обмена веществ.
Кроме лёгких в газообмене организма участвуют внутренние органы (в основном – пищеварительный тракт) и кожные покровы (кожа). Поступающие внутрь газы имеют разные источника. Есть два источника газа, который скапливается в просвете пищеварительного тракта – это атмосферный воздух и кишечные газы. Рассмотрим их кратко [24].
Заглатывание воздуха с последующими переходом его в желудок
Атмосферный воздух попадает в пищеварительную систему организма путём его заглатывания. Глотание определяется как нейромышечная реакция с произвольным и непроизвольным компонентами. В среднем человек глотает около 600 раз в сутки (200 раз во время еды, 50 раз во время сна, 350 раз в остальное время), преимущественно бессознательно [24]. Небольшие порции воздуха (2–3 мл) попадают в желудок при каждом акте глотания. Физиологическая роль проглоченного воздуха заключается в стимуляции моторики желудка. Часть воздуха проходит через привратник в кишечник. При избыточном скоплении воздуха и повышении внутриполостного давления возникает отрыжка вследствие рефлекторного сокращения мышц желудка, диафрагмы и мускулатуры брюшного пресса при открытом входном отделе и спазме привратника. Воздух верхней части кишечника состоит из азота (78 объемных %) и кислорода (21 %), один процент приходится на благородные газы и углекислоту; растворимость воздуха в воде 29 см3/л.
Продукция газов бактериями кишечника.
Большинство поступающих в пищеварительный тракт с пищей углеводов перевариваются и всасываются в тонкой кишке при участии специфических ферментов. Содержащиеся же преимущественно в овощах, фруктах сахараолигосахариды вербаскоза, раффиноза и стахиоза не усваиваются и захватываются толстокишечной флорой. С участием бактериальных ферментов – амилаз и дисахаридаз – происходит расщепление (гидролиз) этих неперевариваемых углеводов до органических кислот и газов – водорода (Н2) и углекислоты (СО2), а у части лиц и до метана (СН4). Такие сложные полисахариды, как ксиланы, пектин, микрополисахариды, гликопротеин, также расщепляются преимущественно микрофлорой толстой кишки. Кроме того, часть микроорганизмов расщепляют протеазами и уреазами пищевой белок до аминов, фенолов, индолов, аммиака (NH3) и других продуктов. Есть мнение, что состав кишечной флоры устанавливается в течение первых 8 лет жизни под влиянием пищевых продуктов, употребляемых семьёй.
Рассмотрим теперь газовый состав содержимого нижней части кишечника. Его представляют:
• Водород. Присутствие Н2 в кишечнике и, следовательно, в выделяемом воздухе человека – результат только жизнедеятельности бактерий, потребляющих углеводы. Он легко попадает через стенку кишечника в кровь и затем выдыхается лёгкими.
• Метан образуется облигатными анаэробами – архебактериями, берущими энергию в результате преобразования Н2, СО2, формиата, ацетата и метанола в СН4; важным источником образования СН4 в кишечнике является индол. Метанобактерии обнаруживаются в фекалиях у 90 % людей, у 30–40 % СН4 обнаруживается в выдыхаемом воздухе. Отмечена положительная корреляция между концентрациями в кишечнике метана и водорода. Больше метана вырабатывается у лиц, страдающих запорами.
• Углекислый газ образуется в результате микробной ферментации углеводов, в том числе входящих в состав растительных волокон.
• Аммиак образуется вследствие микробной деградации мочевины и аминокислот. В результате гидролитических процессов в NH3 превращается до 30 % мочевины, образующейся в печени.
• Сероводород образуется преимущественно при преобразовании серосодержащих аминокислот белков анаэробными сульфатредуцирующими бактериями.
Таким образом, основными компонентами газа в пищеварительном тракте человека являются: углекислый газ, водород, метан, азот и кислород, аммиак, сероводород. Азот и кислород имеют внешнее происхождение, а углекислый газ, водород и метан образуются в результате бактериальной ферментации. Эти газы не имеют запаха. Запах кишечного газа частично обусловлен сероводородом и аммиаком, но значительную роль играют так называемые следовые газы, содержащиеся в концентрациях ниже 1 части на миллион. Это серосодержащие вещества, такие как метанэтиол и диметилсульфид.
Отметим, что газообмен необходим для всех живых организмов, без него невозможен нормальный обмен веществ и энергии, а следовательно и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются СО2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и в конечном итоге выделяющегося из него СО2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Другие газообразные выделяемые человеком продукты, в основном, токсичны. Они называются антропотоксинами [25,26].
Исследования показали [27,28], что воздушная среда помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, которые можно распределить пo классам опасности следующим образом:
• высокоопасные вещества (2-й класс опасности)
диметиламин, сероводород, двуокись aзотa, окись этилена, бензол;
• умеренно опасные вещества (3-й класс опасности)
уксусная кислотa, фенол, метилстирол, толуол, метанол, винилацетат;
• малоопасные вещества (4-й класс опасности)
ацетон, метилэтилкетон, бутилацетат, бутан, метилацетат.
Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. Концентрации остальных веществ, хотя и составляли десятые и меньшие доли oт ПДК, однако, вместе взятые свидетельствовали о неблагополучии воздушной среды. Даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось нa показателях умственной работоспособности исследуемых.
Кстати, человек дышит не только лёгкими, но и кожей, хотя кожное дыхание незначительно (1÷2 % общего объёма дыхания) и выделяет при этом множество газообразных токсикантов. Их концентрации незначительны, но при большом скоплении людей и продолжительном времени экспозиции дозы ядовитых выделений могут вызвать признаки отравления: головную боль, тошноту и вялость, снижение работоспособности и иммунитета. Хочется скорее вырваться на свежий воздух.
У некоторых млекопитающих, например, лошади, кожное дыхание имеет большее значение и его доля может возрастать до 8 % [111]. Хотя перейти полностью на кожный тип дыхания, как это могут делать земноводные, звери, конечно, неспособны. У насекомых тело покрыто хитиновым панцирем, и кожное дыхание для них невозможно. Дышат они совершенно особым способом – трахейным. Трахеи насекомых это сеть тончайших разветвлённых трубочек, пронизывающих всё их тело. Почти в каждом сегменте тела у насекомых есть пара дыхалец – отверстий, ведущих в систему трахей. Крупные насекомые, двигая мускулами брюшка активно вентилируют свои трахеи. Всё-таки трахейный тип дыхания – не самый совершенный, и чем крупнее насекомое, тем труднее воздуху поступать в глубину его тела. Это одна из причин, почему размеры насекомых имеют жёстко заданный «потолок». Большинство водных животных избрали жаберный тип дыхания. Жабры – это особые разветвленные выросты тела – наружные (как, скажем, у аксолотлей) или внутренние (как у костных рыб или многих ракообразных). Чтобы не задохнуться, таким животным приходится постоянно омывать их свежей водой. Рыбы делают это так: набирают воду в рот, а затем, закрыв рот, выталкивают её через жаберные щели. Жабры густо пронизаны кровеносными сосудами: кровь разносит кислород по всему телу. Более подробно о кожном дыхании можно прочитать в разделе 3.4. нашей книги.
Что же надо сделать для восстановления нормального газообмена в организме, а значит и здоровья? Ответ даётся [23] в виде лаконичных как формулы соотношений:
Восстановить нормальное здоровье = нормальное дыхание = нормальное содержание CО2 в крови = нормальный тонус (просвет) микрососудов.
Восстановление способности организма поддерживать оптимальную концентрацию CО2 в крови – необходимое условие и единственный способ избавления как от многих болезней, так и от разрушающих организм медикаментов.
1.3. Физиологические эффекты при дыхании кислородом
В предыдущих разделах книги неоднократно отмечалась животворящая роль кислорода практически для всех организмов планеты, однако это не всегда верно. Практика использования кислорода в биологии и медицине показала, что этот газ может быть весьма токсичным и при некоторых условиях вызывает смерть реципиента. Оказалось, что кислород, как и озон, может иметь негативные последствия при его вдыхании в избыточных концентрациях, но если для озона допустимым является нахождение нескольких частиц на миллиард частиц воздуха, то для кислорода его безопасные концентрации в воздушной среде могут составлять десятки процентов в зависимости от парциального давления в газовой смеси.
Кислород (О2) – наиболее важный компонент человеческой жизни. Недостаток кислорода ведёт к анаэробному метаболизму, лактат-ацидозу и в конечном счёте к необратимому повреждению мозга. Избыток кислорода, с другой стороны, приводит к токсическому повреждению эндотелия лёгких, а у новорождённых – к ретролентальному фиброзу и слепоте [29]
Интенсивность насыщения кислородом плазмы крови описывается законами Дальтона и Генри. Закон Дальтона гласит, что общее давление смеси газов равно сумме давлений каждого газа, входящего в её состав. Давление каждого газа в смеси пропорционально процентному содержанию этого газа в смеси, и называется парциальным. С законом Дальтона непосредственно связан закон Генри, который формулируется так [30]: «Растворимость газа прямо пропорциональна его парциальному давлению над раствором…». Применительно к живому телу его можно перефразировать несколько иначе: «количество газа растворённого в жидкости (крови), прямо пропорционально его парциальному давлению». Следовательно, растворимость кислорода в крови пропорциональна его парциальному давлению в лёгких. При повышении абсолютного давления вдыхаемого воздуха или увеличении содержания в нём кислорода в лёгкие поступает избыток кислорода. При этом перенос (транспорт) кислорода будет осуществляться не только гемоглобином крови, но и за счёт растворения кислорода в плазме крови.