Как микробы управляют нами. Тайные властители жизни на Земле - Эд Йонг 8 стр.


А начинается оно с физики. Снаружи органы свечения покрыты слизью и пульсирующими ресничками – их еще называют «цилии». Реснички создают завихряющийся поток, в который попадают частицы размером с бактерию, но не крупнее. Микробы, в том числе V. fischeri, вязнут в слизи. Теперь физика сменяется химией. Если одна клетка V. fischeri коснется моллюска, ничего не произойдет. Две клетки – все еще ничего. А вот если в контакт с моллюском вступят пять клеток, они включат целый ряд его генов. Одни из них производят смесь антибактериальных веществ, которые никак не вредят V. fischeri, зато создают враждебную среду для остальных микробов. Другие выделяют ферменты, расщепляющие слизь моллюска, производя тем самым вещество, которое привлекает еще больше V. fischeri. Таким образом, V. fischeri вскоре начинает доминировать в слизистом слое, хотя поначалу другие бактерии численно превосходили ее в тысячу раз. Она и только она способна превращать наружные ткани моллюска в пейзаж, привлекающий сородичей и отталкивающий соперников. Она напоминает главных героев научно-фантастических рассказов, терраформирующих суровые планеты, превращая их в комфортные дома, – только она «терраформирует» животных.

Изменив моллюска снаружи, V. fischeri начинает продвигаться внутрь. Она проскальзывает в одну из нескольких пор, спускается по длинному каналу, протискивается сквозь узкий проход и, наконец, оказывается перед несколькими лакунами, которые заканчиваются тупиками. Прибытие бактерии изменяет моллюска еще сильнее. Лакуны устланы клетками, похожими на колонны, – они увеличиваются в размерах и заключают прибывающих микробов в крепкие объятия. Пока бактерии устраиваются на новом месте, дверь за ними захлопывается. Вход в лакуну сужается. Каналы сокращаются. Реснички вянут. Светящийся орган достигает зрелости. В него заселились нужные бактерии (весь этот путь проделывают только V. fischeri) – и больше в него не сможет заселиться никто.

И, собственно, что? Вряд ли кому-то нужно знать столько интимных деталей жизни какого-то малоизвестного животного. Однако все эти детали подчеркивают один немаловажный факт, на который Макфолл-Най сразу обратила внимание. В 1994 году, завершив первый этап изучения эупримн, она написала: «Результатом этих исследований стали первые экспериментальные данные, показывающие, что определенный бактериальный симбионт может играть в развитии животного ведущую роль».

Другими словами, микробы формируют организмы животных.

Как? В 2004 году научная группа Макфолл-Най выяснила, что в основе трансформирующих способностей V. fischeri лежат две молекулы с ее наружной оболочки – пептидогликан и липополисахарид. Это было неожиданно. Эти молекулы тогда были известны лишь в контексте патологий. Их относили к патоген-ассоциированным молекулярным паттернам (PAMP) – это характерные вещества, оповещающие иммунную систему животного об инфекции. Но ведь V. fischeri – не патоген. Она состоит в родстве с бактерией, вызывающей холеру у людей, но моллюску она не вредит никак. Так что Макфолл-Най заменила в аббревиатуре патогенное «П» на более общее микробное «М» и назвала эти молекулы MAMP – микроб-ассоциированные молекулярные паттерны. Новый термин символичен для науки о микробиоме в целом. Он говорит миру, что эти молекулы – не только признак заболевания. Да, они могут спровоцировать тяжело протекающий воспалительный процесс, но они же могут положить начало восхитительной дружбе животного и бактерии. Без них орган свечения не сможет развиться полностью. Без них моллюск выживет, но так никогда и не достигнет полной зрелости.

Сейчас нам известно, что многие животные, от рыб до мышей, растут под влиянием партнеров-бактерий, причем часто под эгидой тех же MAMP, что формируют светящиеся органы моллюска. Благодаря этим открытиям мы можем взглянуть на развитие – процесс превращения животного из одной клетки во взрослую, приспособленную к жизни особь – в новом свете.

Если осторожно отделить оплодотворенную яйцеклетку – человека, моллюска, да кого угодно – и рассмотреть ее под микроскопом, можно увидеть, как она разделяется на две части, затем четыре, затем восемь. Клеточный шарик растет, деформируется, искажается. Клетки обмениваются молекулярными сигналами, указывающими, какие ткани и органы нужно создавать. Начинают формироваться части тела. Зародыш растет и будет расти, пока ему хватает питательных веществ. Весь процесс кажется автономным – словно очень мощная компьютерная программа выполняется сама собой. Однако гавайская эупримна и другие животные говорят, что развитие – это нечто большее. Оно продвигается по инструкциям генов животного, но также и микробных генов. Оно является результатом непрерывных переговоров между несколькими видами, лишь один из которых в их процессе развивается. Это развертывание целой экосистемы.

Чтобы понять, нуждается ли животное в микробах для нормального развития, проще всего их у него забрать. Одни попросту погибают: комар Aedes aegypti, переносчик лихорадки денге, доживает до стадии личинки, но дальше не развивается. Другие легче переносят стерильность. Гавайская эупримна, например, просто перестает светиться по ночам – в лаборатории Макфолл-Най ей, может, и без разницы, а вот в естественных условиях без маскировки она станет легкой добычей. Ученые вырастили стерильные версии почти всех стандартных лабораторных животных, включая рыбок, мушек и мышек. Животные эти выживают, но все-таки они другие. «Стерильное животное – несчастное создание, ведь ему, по всей видимости, постоянно требуется искусственный заменитель микробов, которых у него нет, – писал Теодор Розбери. – Он – что ребенок, которого держат за стеклом, защищая от всех трудностей внешнего мира».

Лучше всего странности биологии стерильных животных заметны в кишечнике. Правильно функционирующему кишечнику для всасывания питательных веществ требуется большая площадь поверхности, поэтому его стенки покрыты множеством длинных ворсинок, по форме напоминающих палец. Ему нужно непрерывно регенерировать клетки стенок, так как проходящий по нему поток еды отшелушивает и уносит их вместе с собой. Ему необходима обширная сеть прилежащих кровеносных сосудов, чтобы переносить питательные вещества по организму. Еще он должен быть недоступным для чужеродных молекул и микробов – его клетки должны плотно прилегать друг к другу, чтобы в вышеупомянутые сосуды не попало ничего лишнего. Без микробов каждая из этих важнейших характеристик оказывается под угрозой. Если рыбки данио-рерио или мыши будут расти без бактерий, их кишечники не смогут как следует развиться, ворсинки в них окажутся более короткими, а стенки – менее прочными. Сеть кровеносных сосудов будет скорее напоминать редкие тропинки на окраине, чем оживленные городские улицы, а регенерационный цикл перейдет на пониженную передачу. Большинство из этих дефектов можно исправить, просто предоставив животным необходимых микробов или даже отдельные микробные молекулы.

Сами по себе бактерии облик кишечника непосредственно не меняют. Напротив, они работают через хозяев. Они не рабочая сила, а скорее руководство. Лора Хупер продемонстрировала это, введя стерильным мышам обычную кишечную бактерию Bacteroides thetaiotaomicron – для друзей просто B-theta. Она выяснила, что микробы активировали множество мышиных генов, отвечающих за всасывание питательных веществ, создание неприступного барьера, расщепление токсинов, формирование кровеносных сосудов и созревание клеток. Другими словами, микробы объяснили мышам, как наладить работу кишечника с помощью своих же генов. Биолог Скотт Гилберт называет этот процесс совместным развитием. Вот какой путь проделала наука. Когда-то считалось (да и сейчас эта живучая идея не сдает позиций), что микробы – это лишь угроза, а оказывается, они помогают нам стать теми, кто мы есть.

Скептики, вероятно, возмутятся и скажут, что мыши, данио-рерио и гавайские эупримны в микробах не нуждаются: стерильная мышь все так же выглядит как мышь, бегает как мышь и пищит как мышь. Убрав бактерии, мы получим все то же животное. Однако стерильные животные обитают в неприхотливой среде – в пузырьках с управляемым микроклиматом, изобилием пищи и воды, полным отсутствием хищников и каких-либо инфекций. В жестоких природных условиях они мало протянут. Выжить они смогут, но, скорее всего, недолго. Они способны развиваться сами, но с партнерами-микробами им будет гораздо проще.

Почему? Зачем животным перекладывать ответственность за свое развитие на другие виды? Почему бы не делать все самим? «Думаю, это неизбежно, – говорит Джон Ролз, работавший со стерильными мышами и моллюсками. – Микробы – неотъемлемая часть жизни животного. От них не избавиться». Не забывайте, что животные возникли в мире, где уже на протяжении миллиардов лет обитали микробы. Они правили планетой задолго до того, как появились мы. А когда мы все-таки появились, у нас, разумеется, развились механизмы взаимодействия с окружающими нас микробами. Было бы глупо, если бы они не развились, – все равно что переехать в другой город, нацепив беруши, повязку на глаза и противогаз. К тому же развитие отношений с микробами оказалось не только неизбежным, но и полезным. Они кормили первых животных. Более того, их присутствие сигнализировало о том, где больше питательных веществ, где благоприятнее температура, где можно поселиться. Первые животные чувствовали эти сигналы и тем самым получали ценную информацию об окружающем мире. И как мы вскоре увидим, следы их взаимодействия в древности сохранились до сих пор.

Николь Кинг сейчас вдалеке от дома. Она руководит лабораторией в Калифорнийском университете в Беркли, но сейчас она в отпуске в Лондоне. Она планирует отвести восьмилетнего сына Нейта на дневной показ мюзикла «Билли Эллиот», но при условии, что он спокойно просидит полчаса с нами на скамейке в парке, пока мы обсуждаем малоизвестную группу существ под названием хоанофлагелляты. Кинг – одна из немногих ученых, которые их изучают. Она ласково называет их «хоаны», так что я тоже буду.

Их можно найти в воде где угодно – от тропических рек до морей подо льдами Антарктиды. Пока мы о них разговариваем, Нейт, до этого тихонько рисовавший что-то в блокноте, радостно взвизгивает и рисует одну для нас. Он чертит овал с изогнутым хвостиком и воротником из жестких волосков – похоже на сперматозоид в юбочке. Хвостик, дергаясь, отправляет бактерий и другие мелкие частицы к воротнику, они там застревают, поглощаются и перевариваются: хоаны – активные хищники. Рисунок Нейта замечательно передает их суть, в особенности тот факт, что хоаны одноклеточные. Они, как и мы с вами, эукариоты, и у них, в отличие от бактерий, есть бонусы в виде митохондрий и ядра. Однако, как и бактерии, они состоят из одной-единственной плавающей клетки.

Иногда эти клетки ведут общественный образ жизни. Salpingoeca rosetta, любимый вид Николь, часто формирует колонии-розетки. Ее сын может и их нарисовать – десятки хоан образуют хоровод, выставив жгутики наружу, словно какая-то волосатая малинка. Кажется, будто хоаны для этого сюда и приплыли, но на самом деле эта малинка – результат деления, а не встречи. Хоаны размножаются делением надвое, но иногда у пары дочерних клеток не получается разделиться полностью, и они так и остаются соединенными короткой перемычкой. Потом это происходит снова и снова, пока неразлучные хоаны не образуют сферу, покрытую одной оболочкой. Это и есть розетка. Эти знания были бы нам бесполезны, если бы не тот факт, что хоаны – ближайшие живущие ныне родственники всех животных на Земле. Они связаны родством с каждой лягушкой, скорпионом, червяком, морской звездой, воробушком. Кинг пытается понять, как появились первые животные, и хоаны приводят ее в восхищение. А процесс, в результате которого появляются розетки и одна клетка становится многоклеточной гроздью, – тем более.

О том, как выглядели первые животные, мы почти ничего не знаем, ведь их мягкие тела не подвергались процессу окаменения. Они приходили и уходили, словно легкий порыв ветра, не оставляя ни единого следа. Зато мы можем строить на их счет вполне обоснованные предположения. Каждое современное животное – это многоклеточное существо, которое развилось из полого сгустка клеток, и ему для выживания нужно питаться, так что логично будет предположить, что эти черты были присущи и нашему общему предку. Значит, возможно, эти розетки – современные образы первых животных. А процесс их создания – деление одной клетки в сплоченную колонию – воспроизводит эволюционный переход, в ходе которого появились сначала примитивные животные, а потом и белки, голуби, утки, дети и все остальные зверушки в парке, в котором мы с Кинг болтаем. Изучая этих безобидных малоизвестных одноклеточных созданий, она практически вплотную подбирается к покрытому тайной зарождению всего нашего царства животных.

Отношения с S. rosetta у нее довольно бурные. Она знала, что в естественных условиях они формируют колонии, но уговорить их повторить то же самое в лаборатории у нее никак не получалось. В руках у нее и у других ученых социальные прежде существа загадочным образом становились одиночками. Она меняла им температуру, уровень питательных веществ, кислотность – бесполезно. В отчаянии она решила заняться секвенированием генома S. rosetta, но и там ее ждали сложности. Кинг кормила S. rosetta бактериями, но теперь ей пришлось избавиться от их клеток, чтобы те не засоряли результаты секвенирования. Она накормила хоан антибиотиками и, к ее удивлению, полностью лишила их способности образовывать колонии. Если раньше они формировали их неохотно, то теперь вообще наотрез отказывались. Значит, за их социальный образ жизни в какой-то мере отвечали бактерии.

Аспирантка Рози Алегадо изолировала микробов из образцов воды без антибиотиков и по очереди стала скармливать их хоанам. Розетки начали снова появляться лишь благодаря одной бактерии из 64. Потому первые опыты Кинг и не удавались – S. rosetta образуют колонии лишь при встрече с нужным микробом. Алегадо его идентифицировала и назвала Algoriphagus machipongonensis – неизвестный прежде вид из группы Bacteroidetes, представители которой живут у нас в кишечнике. Она же выяснила, как именно бактерии побуждают хоан к образованию розеток: они вырабатывают жироподобную молекулу RIF-1. «Я назвала ее RIF, «розеткоиндуцирующий фактор», и добавила номер, потому что наверняка есть и другие», – говорит Рози. И она была права: с тех пор ученые идентифицировали еще несколько молекул, подталкивающих хоан к общественной жизни, у многих других микробов.

Как предполагает Алегадо, эти вещества сигналят о том, что где-то рядом есть еда. Группа хоан лучше справится с ловлей бактерий, чем одна, так что, почувствовав неподалеку бактерию, они объединяются. «Думаю, хоаны «подслушивают», – размышляет Алегадо. – Плавают они медленно, а бактерии подсказывают им, что они попали туда, где много еды и ресурсов. Тогда можно и розетку образовать».

Что из всего этого следует? Неужели первые животные появились благодаря тому, что бактерии спровоцировали наших одноклеточных предков на образование многоклеточных колоний? Кинг советует подходить к этому вопросу с осторожностью. Современные хоанофлагелляты – наши кузины, а не бабули. Если на основе их поведения можно будет выяснить, как вели себя древние хоаны и как они реагировали на древних микробов, это станет огромным прорывом в науке. Кинг пока в этом не уверена. Сейчас она хочет выяснить, реагируют ли современные животные на бактерий таким же образом и, если да, влияют ли бактерии на развитие хоан и животных с помощью тех же самых молекул. Это существенно укрепило бы теорию о том, что у наших истоков стоял этот древний феномен. «Думаю, никто не станет спорить, что в океанах, где появились первые животные, было множество бактерий, – рассуждает Кинг. – Разных видов бактерий. Они правили миром, а животным приходилось под них подстраиваться. Без натяжки можно полагать, что какие-то из производимых бактериями молекул повлияли на развитие первых животных». Действительно без натяжки – особенно если учесть, что до сих пор творится в Перл-Харбор.

Назад Дальше