Я помню, как он трогательно волновался, когда я поступала на химфак, как прятался за деревом, чтобы я его не видела, дорогой ты мой человек! Еще одно удивительное качество – он всегда знает, чего хочет и ровно идет к цели, он верит в свои силы и обладает талантом воодушевлять других, безусловный лидер во всем, который абсолютно надежен, честен и способен на глубокую дружбу. Совершенно не боится взваливать на себя ответственность, всегда генерирующий фонтан идей – столь редкие в людях качества. От создания лаборатории, кафедры до организации КазМНТЦ, строительства Института проблем горения, в семьдесят с лишним – создание завода… огромный путь успеха. Его эффект присутствия на меня феноменален, я помню, когда болела и он подходил, мне сразу становилось лучше, что- то подобное я видела происходило и с другими людьми: у них появлялись крылья, вера в свои силы!
Я восхищаюсь им, потому что в свои 85 лет он полон идей, множества планов и работает не покладая рук, занимается любимым делом. Дорогой мой папа, пожалуйста, живи очень долго, ты нужен всей нашей семье, мы все тебя очень любим!
АРХИВНЫЕ МАТЕРИАЛЫ
ИЗБРАННЫЕ ТРУДЫ
Г.И. КСАНДОПУЛО
СТАДИЙНОСТЬ, ОТК СКОРОСТИ РЕАКЦИИ И БИФУРКАЦИЯ В ПРЕДЕЛАХ МОНОФРОНТА ПЛАМЕНИ
Институт проблем горения, г. Алматы, Казахстан (Сообщение 1)
На основе постулата о конкуренции в пределах фронта пламени двух механизмов конверсии топлива, А – низкотемпературного автокатализа и Т – высокотемпературного автоускорения, предложен метод измерения степени стадийности пламени заданной горючей смеси S. Выделены соответствующие зоны преобладания каждого из этих механизмов, активность кото- рых зависит от начальных значений концентраций С0 топлива, температуры Т0 и давления Р. Количественный метод измерения величины S представляет собой нахождение из данных масспектрального зондирования фронта пламени отношения максимумов скорости реакций потребления кислорода, либо топлива и образования воды, в зонах А – (АК) и Т – (тК). Значения S<1 бифронту (после точки бифуркации). точка бифуркации наступает в результате усиления ОТК в момент перехода разности АК – тК; = е в область положительных значений, что является критерием бифуркации. При е < 0 между зонами А и Т нарастает зона от- рицательного температурного коэффициента скорости (ОтК) на кривых профиля скорости потребления топлива и кислорода и образования воды в зонах А – ( АК) и Т – (ТК). Значения 8<1 отвечают монофронту (до бифуркации), 8<1 бифронту (после точки бифуркации). Точка бифуркации наступает в результате усиления ОТК в момент перехода разности АК – ТК; = е в область положительных значений, что является критерием бифуркации. При е < 0 между зонами А и Т нарастает зона отрицательного температурного коэффициента скорости (ОТК) на кривых профиля скорости потребления топлива и кислорода и образования воды. При е > 0 монофронт переходит в бифронт.
Установлено, что влияние роста Т0 на форму кривых скорости образования и накопления других продуктов горения типичных для зоны Т, за исключением О2, топлива и воды, мало или отсутствует. Впервые представлен экспериментальный материал по масспектральному зондированию пламен горючих смесей пентана а = 1,4; 1,5 и 1,7. На основе опубликованных ранее данных зондирования фронта углеводородных пламен С – С6 представлены результаты вычисления 8. Показано, что величина S для всех пламен является плавно изменяющейся функцией С0 до точки бифуркации. Зависимость S от Т0 отрицательная. Пламена с одинаковыми значениями 8 идентичны.
Введение
Явления самовоспламенения и распространения фронта пламени представлены в литературе как два в чем-то сходных и в то же время различных процесса окислительной конверсии топливной смеси. тепловой баланс процессов производства и стока тепла является основой тепловой и цепной теории самовоспламенения и распространения пламени [1 – 3]. Поэтому процессы превращения топливной смеси в условиях стадийного самовоспламенения и в пределах фронта пламени имеют сходные черты. с одной стороны это чередующаяся холодная и горячая вспышка, а с другой – стационарное холодное пламя, отделенное зоной индукции от горячего пламени. стадийность, как общее свойство рассматриваемых двух процессов, возникает при некоторых изменяющихся начальных значениях концентрации с0, температуры Т0 и давления Р в исходной топливной композиции [4 – 6].
Самовоспламенение в том идеальном виде, как это рассмотрено в теории теплового воспламенения [1], по сути, может быть представлено как процесс формирования теплового баланса структуры фронта пламени. Поэтому в сосудах с размерами большими по сравнению с шириной фронта вспышка самовоспламенения является суммой двух процессов: формирования фронта и его распространения.
В зависимости от С0, Т0 и Р время возникновения фронта достигает нескольких секунд. Характерное же время конверсии топлива в распространяющемся фронте составляет лишь 10-3 – 10-2с. Сравнительно малое время реакции во фронте обусловлено благодаря диффузионному потоку активных частиц из горячей его зоны в топливную смесь, чего нет в условиях формирования первой части процесса самовоспламенения.
Фактор диффузии, наряду с теплопередачей, является основополагающим процессом при распространении газофазного пламени. В момент возникновения вспышки самовоспламенения устанавливается диффузионный поток активных центров. В результате за короткое время увеличивается скорость конверсии горючей смеси со свойством стадийности и вследствие этого возрастает температура субстрата за предел существования холодного пламени 700-800 К. Причиной затухания вспышки является отрицательная температурная зависимость коэффициента скорости (ОТК) одной или нескольких реакций за предельным 700-800 К. Если реактор проточный, то повторяется следующая аналогичная вспышка, а при определенных условиях соотношения скоростей потока и реакции возможно установление автоволнового режима выгорания топлива. В такого рода превращениях нет стационарного диффузионного потока активных частиц. С момента установления во фронте стационарного воспроизводства активных частиц и диффузионного потока в свежую смесь, нарушается любая возможность возникновения и продолжения автоколебаний. Автоингибирование колебательного процесса обусловлено сопряжением факторов диффузии, скорости тепловыделения и ОТК.
В закрытом сосуде теплопотери менее значимые и поэтому устанавливаются релаксационные вспышки – переходящих от холодной к голубой, высокотемпературной, нарастания температуры до почти полного перевода окислителя в оксид углерода, воду, образования сажи, олефинов и др.
возникновение стационарного двух и более стадийного пламени в потоке подпредельной богатой топливной смеси рассмотрим, развивая представление о реакции диффузионного потока атомов водорода и радикалов гидроксила на изменение переменных С0, Т0 и Р в реакционной смеси. Атомарный водород, обладающий максимальным коэффициентом диффузии, занимает ведущее положение в процессе формирования скорости конверсии топлива, теплопроизводства и в целом скорости распространения фронта. В условиях почти стехиометрических пламен кривая распределения концентрации атомов водорода в пределах фронта пламени пропана не является плавной экспонентой [7-9]. Своей формой против потока она свидетельствует о наличии источника атомов водорода в низкотемпературной зоне фронта, аналогичная кривая распределения радикалов гидроксила в сущности повторяет профиль концентрации атомов водорода [10].
К сожалению, в литературе отсутствуют систематические сведения об изменении в пределах фронта качественного и количественного состава диффузионного потока радикалов в свежую горючую смесь по мере возрастания в ней С0 и Т0. Однако имеются опубликованные исследования распределения в пределах фронта массовых потоков, скорости реакции убыли и накопления исходных промежуточных и конечных компонентов реакционной смеси в пламенах С1 – С6 углеводородов при атмосферном давлении [7, 9-20]. Они получены в пламенах с различным С0 и т0, и косвенно характеризует функцию диффузионного потока во фронте указанных пламен. Наряду с этим, для некоторых пламен имеется так же прямой материал исследования распределения в пределах фронта атомов водорода в небольшом интервале вариации С0 [18, 20] (сообщение 2). В дополнение к этим данным имеется так же материал исследования распределения скорости объемного тепловыделения в пределах указанного рода пламен [7, 9, 18, 20].
Бифуркация структуры фронта стационарного пламени рассматривается здесь как образование из одного фронта двух его метаморфоз, двух монофронтов, а в целом бифронта, разделенных переходной зоной разрыва. Каждый монофронт, как и зона разрыва, имеет собственную структуру, а также характерную реакцию на какое-либо внешнее воздействие. Тот факт, что вторая зона существует на фоне первой, по сути, не является главным в вопросе о применимости данного термина. Главное в том, что раздвоение структуры фронта и образование зоны разрыва обуславливает возникновение нового характерного свойства фронта в виде бифронта отличного от изначального, присущего монофронту, т.е. до бифуркации.
Обратная связь в бифронте по диффузии из второй зоны в первую фактически прерывается из-за преобладания ширины разрыва над величиной расстояния диффузии активных частиц и тепла в первую зону. Так на кривых профиля концентрации веществ и температуры в моно и в бифронте пламени эфира, а так же в зоне разрыва имеется один или два перегиба, которые свидетельствуют о нарушении плавного хода процесса нарастания и убыли на кривых профиля концентрации исходных, промежуточных и конечных веществ [21-24].
Термин «монофронт» использован в настоящей статье, и в сообщении 2, для выделения предмета исследования бифронта и рассматривается здесь в традиционном понимании фронта пламени, как самосогласованная последовательность реакций конверсии топливной смеси с преобладанием скорости тепловыделения над теплопотерями и с нижней границей С0 и Т0 и верхней температурой равновесных продуктов горения, очерченной верхней границей зоны люминесценции. термин «волна горения» используется как распространение фронта совместно с равновесной зоной отходящих продуктов горения.
Cложный фронт в многочисленных исследованиях двустадийных стационарных пламён, суммированных отчасти в [4-6], по сути, представляет собой пример завершившейся бифуркации монофронта. Отличительной особенностью бифронта является его своеобразная структура вдоль потока: 1 – холодный монофронт, 2 – зона разрыва и 3 – горячий или голубой монофронт. В пламени до бифуркации этих составляющих в явном виде нет.
Эволюция монофронта в ходе изменения с0, то и ро систематически не изучена в современных экспериментальных и теоретических исследованиях. имеются с давних пор обширное число публикаций, посвященных стадийному самовоспламенению и стадийным пламенам [4-9, 21-25].
В работах [26-28] сделано заключение, что главная черта механизма образования холодного пламени в условиях самовоспламенения является большая скорость реакции распада гидропероксида на два высокоактивных радикала ОН и КО. С ростом температуры скорость этой реакции снижается, одновременно возрастает скорость распада перекиси водорода на два гидроксильных радикала, что обуславливает последующую горячую вспышку.
Применительно к условиям распространяющейся волны горения смена реакций разветвления соответственно распределению температуры в пределах монофронта с одной стороны может быть рассмотрена как фактор, способствующий образованию разрыва при плавном изменении С0 и Т0 и скорости потока реакционной смеси питающей пламя. С другой стороны, это заключение по сути допускает чередование режимов выгорания в виде холодной и горячей вспышек. Это представляется возможным в условиях перемежаемости по концентрации и температуре потока в больших камерах горения, которое неизменно возникает при раздельной подаче топлива и окислителя в камеру горения. Однако, применительно к вопросу о механизме формирования разрыва в монофронте в случае наличия стационарного диффузионного потока активных центров в свежую смесь автоволновой режим не приемлем, по кинетическим соображениям.