Социальная информатика - Соколова Ирина Валерьевна 5 стр.


Рассмотрим основные системы классификации знаний: иерархическую, морфологическую, древовидную, реляционную.

Классификация как метод научной систематики играет важную роль в формировании ядра знаний того или иного научного направления. Классификационные системы такого типа имеют выраженную иерархическую структуру, в которой все объекты (понятия, факты) разделены на уровни, связанные между собой отношением «старший – младший».

Классификация может проявить себя не только как инструмент организации научных знаний, но и как фактор социального порядка, способствующий активизации социальных отношений. Так, существующие системы тарифов и ставок, ученых степеней и званий, структура должностей и служебных постов в гражданской службе и армии играют не только организующую, но и стимулирующую роль. Подобная модель классификации знаний получила в науке и практике название иерархической.

Достоинства данной системы классификации заключаются в том, что она проста в освоении, легко обновляется и эффективно решает задачу разнесения новых понятий по иерархическим уровням.

Недостатки иерархической модели знаний: прямые связи между понятиями соседних уровней обозначены слабо, или вовсе отсутствуют; иерархическая классификация наиболее эффективна, когда при переходе от уровня к уровню работает один и тот же тип отношений, например, родовидовой.

Систематика, лежащая в основе классификации, может применяться как сильное средство исследования. Так, иногда оказывается полезным при рассмотрении группы объектов выделить несколько характерных для них признаков в качестве определяющих и ввести меру степени их проявления. Подобный подход называется морфологическим, так как использует идею разложения объекта на его части (признаки). Часто подобная группировка приводит к выявлению неизвестных закономерностей, связывающих объекты каждой группы.

Упомянутые выше недостатки иерархической модели классификации свойственны и морфологическим моделям. Их удается устранить, используя так называемые ветвящиеся (древовидные) структуры (модели) представления знаний, которые, в частности, лежат в основе актуальных в контексте развития Интернет гипертекстовых технологий. В последнее время исследователи активно разрабатывают способы автоматического построения гипертекстов. Идея динамического гипертекста состоит в том, что вместо разбивки текста на фиксированные узлы, текст связывается большим количеством связей между входящими в текст одноименными поисковыми единицами: словами, терминами, текстовыми константами и т. д. Разработанная в ИПИ РАН по концепции динамического гипертекста система ТЕРМИН-3 обеспечивает построение гипертекстовых сред в автоматическом режиме. Система предназначена для разработки конкретных гипертекстов, информационно-поисковых систем фактографического типа, электронных книг и тезаурусов, частотных словарей и т. п.

Отдельные понятия, факты, знания, связаны между собой отношениями, выражающими суть имеющихся между ними связей. Как и в иерархической модели, это могут быть родовидовые отношения, но также и другие типы отношений: «быть представителем», «иметь», «наследовать» и т. п. Однозначность связей в древовидной структуре и разнообразие охватываемых ею отношений позволяет повысить «динамизм» системы знаний. Действительно, система знаний, представленной иерархической или морфологической моделями, статична (декларативна).

В древовидной структуре можно прослеживать восходящие и нисходящие ветви связей, делая как индуктивные (от частного к общему) и дедуктивные (от общего к частному), так и индуктивно-дедуктивного выводы.

Благодаря такой организации представленные знания получают как дополнение к декларативности процедуральность, т. е. способность к выводу общих знаний из структуры отношений и понятий. Древовидная структура знаний, несмотря на ее простоту и распространенность в информационном обмене, все-таки специфична. В ней, как и в предыдущей модели знаний, заложена парадигма иерархичности. В то же время некоторая система знаний может не соответствовать этой парадигме.

Например, совокупность знаний, описывающих конкретный трудовой коллектив, многоаспектна, и часто не удается установить отношения иерархии (род-вид), хотя связь между ними имеет место. Вот один из возможных аспектов: все представители трудового коллектива могут быть включены в алфавитный список с указанием табельного номера, года рождения, специальности и т. п. – «Список 1». Другой аспект: все члены коллектива работают на условиях сдельной оплаты, и величина их заработка определяется единой тарифной сеткой. Поэтому список специальностей и разрядов с указанием стоимости часа рабочего времени дает представление о системе оплаты труда. Назовем этот список – «Список 2». Третий аспект: при начислении зарплаты необходимо учитывать фактическую выработку работника на протяжении некоторого периода. Поэтому список, состоящий из табельных номеров и фактически проработанного каждым времени, – это «Список 3».

Все три списка содержат необходимый объем знаний о трудовом коллективе в контексте начисления заработной платы. Подобные модели представления знаний, состоящие из связанных списочных структур, получили название реляционных.

В реляционных моделях удается представить более сложные области знаний. В них каждый из аспектов может рассматриваться как автономный блок, внутри которого допускаются изменения. Удобным средством является комбинация устойчивых и изменяемых знаний. Так, знания Списка 2 длительно устойчивы. В Списке 1 представлены знания, которые могут меняться с течением времени – текучесть кадров, изменение квалификации и т. п. Список 3 обновляется каждый раз по мере необходимости. Не вызывает трудностей задача пополнения реляционной модели новыми знаниями путем расширения уже имеющихся списков и добавления новых списочных структур.

Существуют и другие способы формализации знаний. Например, промежуточным между древовидной и реляционной моделями классификации являются так называемые семантические сети. С их помощью между понятиями, фактами, знаниями устанавливаются связи – отношения. Они как бы являются обобщением древовидных моделей, так как отличаются от последних снятием требований иерархичности. В то же время семантические сети могут считаться частным случаем реляционных моделей, так как именно из них могут быть построены связанные списочные структуры, когда понятие, являющееся узлом семантической сети, расширяется в список, а соответствующее отношение с другим списком из единичного становится групповым.

Все описанные приемы формализации знаний направлены на создание некоторого устойчивого каркаса, на который может быть надета оболочка системы конкретных знаний. В случае если между отправителем и получателем знаний достигнута взаимная договоренность относительно этого каркаса, то информационный обмен приобретает необходимую регламентирующую основу, что повышает его эффективность.

Традиционные и новые информационные технологии. Под традиционной информационной технологией, как правило, понимается информационная технология на базе «жестких алгоритмов». На таких технологиях построена практически вся так называемая офисная информатизация (текстовые и табличные редакторы, программы бухгалтерских расчетов, статистические программы и т. д.). Реализация данных технологий стандартна и практически не зависит от пользователя.

Под новой информационной технологией, как правило, понимается информационная технология на базе «мягких алгоритмов» с использованием достижений искусственного интеллекта. Именно за данным видом информационных технологий – будущее социокультурного варианта информатизации, ибо новые информационные технологии учитывают специфику, максимально «подстраиваются» при своей реализации под конкретного пользователя.

Реализации такого подхода к удовлетворению информационных потребностей людей способствуют, например, нейросетевые технологии – алгоритмы, имитирующие деятельность мозга. Подобно тому, как человек решает задачи на основе накопленных ранее знаний, нейросеть может, обучившись, строить структуры нейронов, способных давать оценки и прогнозы явлений, составляющих образ жизни конкретного пользователя.

Причины невозможности массовой информатизации общества без использования достижений искусственного интеллекта. Массовая информатизация общества возможна лишь после распространения компьютеров интеллектуального типа с так называемым «дружественным интерфейсом». Только тогда можно достичь необходимого уровня согласования растущего объема знаний с потребностями и возможностями людей.

Дружественный интерфейс компьютера не требует от пользователя ничего, кроме четкого понимания своей информационной потребности: ни знания программно-технической компьютерной специфики, ни владения иностранным языком. Предельным проявлением «дружественности» интерфейса компьютера можно считать голосовой ввод информации, а в перспективе – считывание компьютером мыслей человека. В этих вариантах дружественного интерфейса будет одновременно практически решена и проблема защиты персональной информации.

Развитие дружественного интерфейса должно обязательно сопровождаться процессом воспитания так называемого непрограммирующего пользователя, его интеллектуализации в своей профессиональной и досуговой (не машинной) предметной среде.

Принципиально важно подчеркнуть, что параллельно должно происходить два процесса: с одной стороны, развитие машинного (искусственного) интеллекта, позволяющего «подстраиваться» под информационные потребности пользователя, и, с другой стороны, развитие человеческого интеллекта. На практике же распространены два, одинаково опасных по социальным последствиям, подхода, сводящиеся либо к требованию всем специализироваться на компьютерной технике и программировании, либо к воспитанию неинтеллектуального, пассивного пользователя.

Материя, энергия, информация, знания – связь понятий*. Исходной посылкой является утверждение, что информация является семантической сущностью материи, т. е. информация считается объективной категорией. Понятие «материя» отождествляется с понятием «система», в которую входят составными элементами вещество, энергия, знание и информация. Эти элементы в соответствии с законом сохранения материи поддерживают систему в равновесном состоянии путем взаимных переходов из одной в другую субстанцию системы. При взаимодействии этих элементов системы вещество выступает носителем знания, а энергия – носителем информации, что может быть графически представлено следующим образом (схема 3).

Схема 3

Информационные процессы могут быть рассмотрены и как превращенная форма практически реализуемых человеческих отношений, и как фактор социальной самоорганизации социума и управления (самоуправления). Социальная информация является необходимым условием интеграции и гомеостаза самоорганизующейся социальной целостности. Существует зависимость интегрального качества любой самоорганизующейся системы, эффективности ее функционирования, жизнеспособности и сопротивляемости внешним неблагоприятным воздействиям от качества ее информационной инфраструктуры и адекватности циркулирующей информации критериям устойчивости развития системы. Нарушение этого принципа чревато внутренними и внешними противоречиями, болезненными последствиями для социальной макро- и микросистемы.

Соотношение понятий информация, данные, знания. Понятия – «информация», «данные», «знания» часто используются как синонимы, в то время как их смысловое содержание различно.

Выше уже были приведены примеры того, как определялось понятие информации в трудах известных ученых – Н. Винера, А.И. Берга, В.М. Глушкова. Несмотря на различие этих определений, информация в них – как знак содержания, которое является предметом сообщения, направленного от источника к приемнику (например, источник – внешний мир, а приемник – субъект восприятия). Предметом сообщения может быть информация количественной (статистической), семантической и прагматической меры.

Знания и данные – формы представления информации, призванные способствовать повышению эффективности информационно-обменных процессов, приводящие информацию к удобному для передачи и восприятию виду.

Между понятиями «знания» и «данные» можно выделить отношения иерархии. Знания – результат преобразования данных. Одни и те же сведения могут выступать как данные, если в результате их преобразования получаются новые сведения, выступающие как знания, но могут пониматься и как знания, если они – продукт преобразования первичных сведений. Например, при проведении социологического исследования объем сведений в анкетах содержит знания о выборочной совокупности. Вместе с тем после корреляционного анализа указанные сведения выступают как исходные данные для математических расчетов, приводящих к получению знания о взаимозависимости изучаемых свойств социального явления.

Таким образом, знания – это данные более высокой организации, достигаемой преобразованием исходных данных.

Структура исследований в области искусственного интеллекта. Научные исследования по искусственному интеллекту в настоящее время ведутся в двух взаимодополняющих областях:

 в области раскрытия механизмов мышления человека с целью их последующего моделирования (фундаментальные исследования в области искусственного интеллекта);

 в области создания технических (компьютерных) систем, обладающих не меньшими, чем человек, способностями продуктивно манипулировать имеющимся объемом знаний и порождать новые знания.

К области фундаментальных научных исследований искусственного интеллекта также относятся следующие понятия.

1. «Мягкие» вычисления. «Жесткие» вычисления – это работа по алгоритмам, «мягкие» же вычисления – это вычисления, при которых могут быть и новые задачи, и случайное нахождение того, что нужно. То есть речь идет об эволюционных алгоритмах, моделировании эволюционных процессов.

2. Когнитивная графика (пифограмма). Это не иллюстративная, а познавательная графика, которая порождает решения. Например, если оператор зафиксирует на экране закономерность в развитии светового пятна, являющегося визуальным отображением вычисления, – это «снимается» далее с ЭВМ как заготовка решения, т. е. когнитивная графика является визуальным изображением математики.

3. Виртуальная реальность. Средства информационной технологии и, в частности, человеко-машинного интерфейса, позволяют создать «виртуальный мир» – искусственное трехмерное пространство.

Первой фирмой виртуальной реальности явилась VPL Research (США), основанная в 1984 г. Д. Леньером, автором самого термина «виртуальная реальность».

Методологическое значение для анализа социокультурного развития процессов информатизации имеет различение и осмысление таких понятий, как «виртуальная реальность» и «виртуальная жизнь».

Если виртуальная реальность – это некое смоделированное и предлагаемое любому пользователю «стандартное» искусственное пространство, то виртуальная жизнь (так называемая концепция Alife) – это смоделированное для конкретного пользователя, в предельном случае в перспективе смоделированное им самим (как непрограммирующим пользователем) искусственное жизненное пространство.

Назад Дальше