До и после Победы. Книга 1 - Суханов Сергей Владимирович 4 стр.


Правда, если поначалу мы предполагали, что все эти люди будут заниматься ремонтом техники, то постепенно усилия все больше смещались в сторону переделки танков в самоходки. Окончательно это направление стало самым важным после нашего выхода на большие просторы, когда в нашем распоряжении оказались тысячи корпусов, так что можно было выбрать относительно целые и их и развивать, оставив сложные случаи на потом или на никогда. Нет, в августе мы попытались поремонтировать и корпуса с сильной деформацией, когда нарушались взаимные расположения установочных поверхностей и отверстий под агрегаты. Причем выбрали еще несильно пострадавший танк, у которого были небольшие нарушения корпуса, и на нем попытались что-то сделать - сошлифовать или наплавить установочные поверхности агрегатов, так, чтобы оси агрегатов были максимально параллельны, а оси ведущих колес проходили наружу через подшипники. Но промучались недолго и бросили это дело - хватало более пригодных для ремонта танков, и устанавливать двигатели и передачи еще и на такие покореженные - слишком трудоемко - надо очень точно соблюсти все эти параллельности на больших расстояниях, то есть требуются измерения и обработка очень высокой точности - иначе агрегаты будут работать под углом, пусть и небольшим, но и он даст повышенный износ, причем самый противный - на конус или кособокость - из-за несимметричности осей и, соответственно, несимметричности в передаче нагрузок через зубчатые передачи и валы. Так что до середины сентября мы разгребали самое простое, и только потом снова подступились к таким тяжелым ремонтам и созданию для них сборочных и измерительных приспособлений, приспособлений для обработки, а к октябрю наши уже подумывали о специализированных станках, которые позволят соблюсти параллельность при обработке далеко разнесенных поверхностей - тут все дело в жесткости, которую будет необходимо обеспечить на больших - два-три метра - расстояниях, причем станок надо будет как-то устанавливать в корпус ... или корпус кантовать, чтобы подвести установочные поверхности под инструмент ... еще будем думать.

В общем, объем сварных швов рос, хотя и не такими темпами, как нам бы хотелось. Тут все зависело от характера работ. Скажем, если заделать сквозную пробоину от бронебойного снаряда - тут могло работать более сотни человек, причем на броне любых танков. Там и дел-то - вырезать заготовку, обработать ее на токарном станке под размеры пробоины, разделать края самой пробоины - сбить окалину да очистить от грязи - и знай себе проваривай - пробоины были небольшими, так что если даже сварка будет некачественной, это не сильно повлияет на снарядостойкость танка.

Другое дело с заделкой разрушенных броневых листов или наваркой дополнительной брони. Заделка листов, особенно у средних, а тем более тяжелых танков - сложный процесс.

Разрушенный участок надо вырезать - и сам пролом, и вогнутый вокруг него металл, и участки, по которым пошли трещины. А если танк горел - надо еще посмотреть что там с твердостью стали - не выгорел ли углерод - для этого сошлифовывали верхний слой и затем проверяли твердость. Вырезали, как правило, бензорезом, причем надо было постараться не закалить излишне и не обезуглеродить остающиеся слои - то есть выполнять резку максимально быстро и не допускать быстрого охлаждения.

Края разлома после этого становятся неровными, да еще быстро покрываются ржавчиной - а кислород, напомню, враг хорошего шва. Поэтому края надо разделать - стесать их любым способом, чтобы они имели сравнительно ровные участки, да еще с обратной конусностью - с внутренней стороны танка разделка меньше, снаружи - больше, чтобы можно было добраться электродом до самого дна. Ну или со встречной конусностью, если броня толстая - например, на КВ, да и на Т-34 - на них V-образный шов получится слишком большого объема - упаришься его потом заваривать, лучше сделать его в проекции похожим на К или Х, а не на V. Мы делали эти работы с помощью переносных фрезерных станков - три штуки нашлись в местных депо.

Одновременно, или затем, если форма проема сразу непонятна - вырезать заготовку, которую будем вваривать, ее края также обработать - тут уже можно на стационарном фрезерном или строгальном станке - главное, чтобы они позволили закрепить такие большие заготовки, как вариант - сделать несколько заготовок, но тут уже потребуется больше швов, чтобы их потом сварить - а это и увеличение трудоемкости, и снижение стойкости брони.

Затем вставить заготовку в пробоину, прихватить ее, чтобы не вывалилась, и постепенно заполнять V- или X- или К-образное пустое пространство между корпусом и заготовкой. При этом для Х-образного сечения шва площадь сечения, скажем, для стали толщиной сорок пять миллиметров - то есть броня танка Т-34 - составит почти восемьсот квадратных миллиметров и на один погонный метр шва надо будет наплавить шесть килограммов металла. И если сваривать, скажем, электродами диаметром пять миллиметров, потребуется десять-двенадцать проходов, то есть дофига - "рука бойцов колоть устанет". А электродами диаметров шесть, семь, ну пусть даже восемь миллиметров - шесть-восемь проходов. Для КВ все эти параметры составляли десятки - что килограммов, что проходов. Вот и сидел мастер, и водил электродом по швам туда-обратно, днями и ночами. А я все подумывал - почему тут не используется автоматическая сварка - вроде бы про нее уже тут знали и применяли.

Еще в 1927 году изобретатель Д.С. Дульчевский, работавший в Одесских железнодорожных мастерских, разработал свой первый автомат для сварки под флюсом. Да и в Америке автоматическую сварку применяли уже в тридцатых годах - там сваривали трубы. Как и при ручной сварке, при автоматической надо каким-то образом подавать в зону сварки электрод и флюс. Механизм со сменными электродами по аналогии с ручной сваркой, как я понял, был слишком сложным, поэтому все работали с проволокой - она непрерывно подавалась к месту сварки. И тут проблемой становилась подача флюса. Ведь обмазать им всю проволоку нельзя - через проволоку должен подаваться электрический ток, а флюс неэлектропроводен, то есть ток пришлось бы подавать через всю бухту проволоки и, так как она имеет высокое сопротивление, то основная энергия уходила бы на ее нагрев. То есть контакты должны передавать ток на проволоку недалеко от места сварки - на расстояниях в несколько сантиметров. Был тут сделан вариант крестовой проволоки - контакты скользили по выступам, а флюс был намазан во впадинах. Тоже вариант, но в основном работали все-таки с обычной круглой голой проволокой, а флюс либо заранее намазывали на будущий шов, либо подсыпали в процессе сварки - эту технологию применял еще в 19м веке Славянов - изобретатель сварки железными электродами. В конце тридцатых и Патон наконец-то приходит к этому же решению - в июле сорокового года в его институте сварки сварили шов металла толщиной тринадцать миллиметров со скоростью 32 метра в час - в несколько раз быстрее ручной сварки. Вот и нам бы так же ... Правда, у Патона сваривали обычные стали, а не танковые, да и флюс надо будет подбирать - он отличается от флюса для ручной сварки, даже если сваривается одна и та же сталь - подробности мне пытались нарыть наши "библиотекари", а пока мы попробовали флюсы АН-1, созданный в сороковом, и ОСЦ-45, созданный в начале сорок первого - результаты были пока так себе, да и сам автомат был как бы полуавтоматом - мы пока еще не сделали автоматическое регулирование и процессом управлял сварщик.

Ну да ладно - там между делом ковырялось четыре человека, авось что-то да получится - пока мы не могли выделить больше людей на эти исследования, может - в октябре, когда поставим в строй хотя бы пятьсот танков и самоходок - можно будет и поактивнее заняться исследованиями. Там ведь еще потребуется и передвигать аппарат вдоль шва - то есть сделать какие-то направляющие, рельсы ... да и шов желательно сориентировать горизонтально, а то сейчас большинство швов - на наклонных, а то и вертикальных поверхностях - на бортах, лобовом листе, башне, а это дополнительная сложность сварки из-за наличия расплавленного металла, который сила тяжести пытается пролить через нижнюю кромку, поэтому сварщику надо следить и не допускать, чтобы его скапливалось настолько много, чтобы он смог преодолеть силу натяжения расплава ... а если шов будет горизонтально, то и выливаться металлу будет некуда ... только тогда потребуется как-то кантовать многотонные махины ... в общем - надо думать.

А пока мы могли сваривать только три погонных метра в сутки - это одна, ну, две пробоины максимум. Вот с более тонкими бронелистами было уже полегче - там и металла требуется меньше - всего полтора килограмма на погонный метр при толщине два сантиметра, и проходов - всего три-четыре штуки, причем тонкими - четыре, пять миллиметров - электродами. Тут уже могли варить менее опытные сварщики, так как не требовалось следить за тепловыми процессами на большой глубине - глубины как таковой тут, в отличие от брони сорок-восемьдесят миллиметров, и не было. Поэтому на сварке тонкой брони работало уже два десятка сварщиков, выдавая на гора полсотни метров швов, правда, в основном шли работы не по ремонту, а по установке дополнительной брони - для САУ, так как легкобронированные танки мы в основном переделывали в самоходки - уж очень была уязвима легковесовая категория на современном поле боя.

ГЛАВА 6.

Имелся тут опыт работы и не только с толстостенными сталями, но и с пружинными - как пружинами, так и рессорами - ведь рельсовый путь, каким бы он ни был стальным, все-равно имеет неровности - тут и подвижки грунта и подушки, на которой покоятся рельсы, и сдвиг рельсов вправо-влево, если балласт - как называли засыпку между шпалами - не удерживает мощных качаний составов, и рельсовые стыки, и даже износ рельсов - все это необходимо компенсировать, чтобы неровности не раздолбали паровоз и вагоны раньше времени. Так что подвижной состав - что паровозы, что вагоны - имел пружинную или рессорную подвески, которые надо было постоянно ремонтировать - мало того что ослаблялись крепления рессорных пакетов, та еще и сами рессорные листы постепенно получали остаточную деформацию и уже не могли работать эффективно, а то и просто трескались.

И ремонт деталей из пружинной стали тоже имел свои особенности. В ремонте рессор самое главное - термическая обработка - сначала отжечь с последующим медленным остыванием, чтобы снять упругость, потом выправить, и затем снова вернуть упругость - закалить, отпустить в соляной ванне, то есть ванне, где находится расплав соли при температуре примерно 450 градусов. Причем печи тут были уже не обычными, как раньше, где температуру измеряли чуть ли не на глазок, а с пирометрами и даже самописцами, которые позволяли отследить, как проходил процесс нагрева - при нарушенном режиме термообработки ставить листы в пакеты бывает просто опасно - могут лопнуть в самый неподходящий момент.

Так что народ имел опыт работы с термообработкой. В остальном-то ремонт рессор почти не отличался от ремонта, скажем, паровозных топок или котлов, разве что применялась пружинная сталь в виде рессорных листов или пружинных заготовок - порой даже в виде прутков, которые завивали уже по необходимости - под конкретную подвеску конкретного вагона или паровоза. А так, снятые для ремонта листы рессоры, если они без механических повреждений, только выправляют, чтобы восстановить нужный изгиб. Ну а если какие-то листы пошли трещинами, то их заменяют на новые - отрезают листы нужного размера от заготовок, хранящихся на складе, или же после отжига используют листы с той же подвески, более длинные, но которые имеют повреждения - лишнее обрезают, затем их гнут и проводят термообработку.

Естественно, этот производственный потенциал был нами перенацелен прежде всего на ремонт бронетехники и автомобилей. Причем наши умельцы, когда разгребли первоочередные завалы, начали проводить эксперименты по модернизации техники, и прежде всего - самоходок, у которых из-за двух-, а в последнее и время и трехслойных бутербродов из брони и бетона, существенно возросла нагрузка на передние катки. И, несмотря на требования осторожной езды, на скоростях не более двадцати километров в час, эта нагрузка давала о себе знать. Случалось всякое - прогиб балансиров, изгибы больших полуосей и стоек качающихся рычагов.

И все это наши ремонтники поначалу старательно ремонтировали - в первой половине сентября за неделю приходили в негодность как минимум четыре самоходки - хорошо хоть запас деталей был уже большим, так что самоходки быстро выходили за ворота ремонтных мастерских, а замененные детали оставались внутри для починки. Запас был большим, но не бесконечным, поэтому наши начали проводить попытки переделать подвеску с пружинной на торсионную - она обеспечивала более энергоемкий подвес при меньших габаритах, так что он умещался внутри корпуса - это хотя и усложняло ремонт, зато защищало подвеску - как от поражения снарядами и осколками, так и от природных факторов - перепадов грязи, песка, воды. Хотя бы для передних катков, нагрузка на которые при переделке из танка в самоходку возрастала существенно - дополнительный вес более толстой брони уже слишком сильно воздействовал на пружины и ходовую и те не выдерживали.

Да, мы ограничивали максимально разрешенную скорость, чтобы снизить вероятность поломки, но далеко не всегда это можно было соблюсти - не каждый мехвод способен хладнокровно выползать из-под огня, да порой это становится просто смертельно опасно - и вот - газанут, и подвеска хорошо если додержится до укрытия, а в идеале - до ремонтников, а то самоходка могла застрять и на поле боя. Так что работы по ее усилению были насущной необходимостью. Правда, сначала пытались повторять уже существующую конструкцию - пробовали ставить более толстые пружины и усиленные оси. Если с осями дело было правильным, то с пружинами пока было тяжело - длинную витую железяку не так-то просто равномерно закалить-отпустить - где-то да будет нарушен температурный режим, и пружина хорошо если сломается сразу, а не через какое-то время. Поэтому очень скоро наши начали делать попытки перевести хотя бы передние катки на торсионы.

Посмотрели, как это сделано в танках КВ, первые торсионы взяли оттуда-же - и - вуаля - три танка Т-26 с такой подвеской отбегали уже три недели, причем без поломок - ну, у одного вылетело плохо проваренное крепление. Но сама идея работала, хотя для Т-26 пришлось менять конструкцию для всех четырех катков обеих передних тележек. Так что наши сейчас пытались сварганить уже полностью свои торсионы - из местных запасов пружинной стали. Но там было много сложностей - нужна и чистая обработка поверхности, чтобы царапины не создавали концентрации напряжений, и особые режимы закалки, отличавшиеся от закалки пружин и рессорных листов, так как торсионы работали на скручивание - прежде всего своей поверхностью, и ее закалка была особенно важным моментом.

Народ работал, торсионы -тоже уже подавали надежды - сотня километров пробега без поломки была уже стабильным результатом, хотя дальше начиналась лотерея - какие-то торсионы ломались, а какие-то бегали и сто пятьдесят - больше статистики мы пока собрать не смогли, так как наши танки все-таки не делали длинные забеги, а больше паслись в позиционных районах и отстреливали периодически появлявшихся фрицев и их бронетехнику. Так что инженеры сейчас варганили стенды для проверки торсионов в заводских условиях - по нашим прикидкам пара тысяч скруток-раскруток имитировали один километр хода по среднепересеченной местности. Так что миллион колебаний - и получим статистику по тысяче километров - такой ресурс мы пока считали для себя вполне приемлемым. Если делать сорок колебаний в минуту - то потребуется всего 25 000 минут, или чуть более семнадцати суток непрерывной работы. Ничего - мы люди терпеливые. А если поставить сто колебаний - скажем, быстрая езда - то это уже семь суток. Совсем пустяк. Благо для энергетических мощностей это практически ничего не стоило - привод сделали из старого паровоза - отремонтировали топку, котел, паровую машину - и получили мощный движок, к которому подсоединяли все новые стенды - по прикидкам инженеров, мощности движка хватит на полсотни стендов, их же пока было чуть более двадцати - на пять-семь вариантов торсионов - как по их размерам, так и по способу закалки.

Назад Дальше