Откуда Уэллс взял эту идею? Писатели-фантасты на такие вопросы обычно отвечают, что это им «просто придумалось», но здесь у нас есть конкретная информация. В предисловии к изданию 1932 года Уэллс писал, что его натолкнули на такую мысль «студенческие споры в лабораториях и дискуссионном обществе Королевского колледжа науки в восьмидесятые годы». По словам его сына, идея возникла благодаря статье о четвертом измерении, прочитанной одним из студентов. Во вступительной части романа Путешественник во Времени (он ни разу не называется по имени, хотя в раннем варианте его звали доктором Небогипфелем, так что, пожалуй, это к лучшему) объясняет возможность существования машины времени четвертым измерением:
Но подождите минуту. Может ли существовать вневременный куб?
– Не понимаю вас, – сказал Филби.
– Можно ли признать действительно существующим кубом то, что не существует ни единого мгновения?
Филби задумался.
– А из этого следует, – продолжал Путешественник по Времени, – что каждое реальное тело должно обладать четырьмя измерениями: оно должно иметь длину, ширину, высоту и продолжительность существования…
…И все же существуют четыре измерения, из которых три мы называем пространственными, а четвертое – временным. Правда, существует тенденция противопоставить три первых измерения последнему, но только потому, что наше сознание от начала нашей жизни и до ее конца движется рывками лишь в одном-единственном направлении этого последнего измерения…
…Однако некоторые философские умы задавали себе вопрос: почему же могут существовать только три измерения? Почему не может существовать еще одно направление под прямым углом к трем остальным? Они пытались даже создать Геометрию Четырех Измерений. Всего около месяца тому назад профессор Саймон Ньюком излагал эту проблему перед Нью-Йоркским математическим обществом.
Понятие о времени как о четвертом измерении начало распространяться среди ученых в конце Викторианской эпохи. Сначала математики, пытаясь дать определение «измерению», решили, что ему не обязательно иметь направление в пространстве. Измерение – это всего лишь переменная величина, а их количество – это наибольшее число таких величин, каждая из которых может меняться независимо от других. Получается, что чар, основная частица магии, состоит из резонов, а каждый из них, в свою очередь, складывается из, по крайней мере, пяти ароматов: вверх, вниз, вбок, привлекательность сексуальная и мята перечная. То есть чар как минимум пятимерен, если не считать, что «вверх» и «вниз» не зависят друг от друга – что, по-видимому, происходит из-за квантов.
В XVIII веке математик Жан Лерон Д’Аламбер (в детстве его нашли на пороге церкви, по названию которой он и получил среднее имя) предложил мысль, что время – это четвертое измерение, в статье в «Энциклопедии наук, искусств и ремесел». Другой математик, Жозеф Луи Лагранж, поставил время на место четвертого измерения в своей «Аналитической механике» 1788 года, а в «Теории аналитических функций» 1797 года ясно указал: «Механику можно рассматривать как четырехмерную геометрию».
Для того чтобы идея прижилась, понадобилось некоторое время, но к началу Викторианской эпохи слияние времени и пространства уже стало для математиков обыденностью. Тогда его еще не называли пространством-временем, но знали о четырехмерности: три измерения пространства и одно – времени. Журналисты и дилетанты вскоре начали называть «четвертым измерением» само время, не понимая, что это измерение может быть иным, и преподносили это так, будто ученые искали его веками и наконец нашли. Ньюком писал об изучении четырехмерного пространства начиная с 1877 года, и заявлял об этом в Нью-Йоркском математическом обществе в 1893-м.
Уэллс упомянул Ньюкома в связи с одним из более ярких представителей Викторианской эпохи, писателем Чарльзом Говардом Хинтоном, который прославился благодаря тому, что горячо поддерживал идею четвертого измерения. Хинтон был талантливым математиком, искренне любившим четырехмерную геометрию. В 1880 году он опубликовал работу под названием «Что такое Четвертое измерение?» в журнале Дублинского университета и годом позже переиздал ее в «Вестнике Челтнем Ладиса». В 1884 году она вновь появилась в виде брошюры с подзаголовком «Истолкование призраков». В ней Хинтон с неким налетом мистики связал четвертое измерение с различными псевдонаучными темами – от призраков до загробной жизни. Призраки легко появляются и исчезают, перемещаясь вдоль четвертого измерения, так же, как монета может появляться и исчезать с ровной поверхности стола, двигаясь вдоль нашего третьего измерения.
На Чарльза Хинтона существенно повлияли взгляды его отца-хирурга Джеймса, который сотрудничал с Хэвлоком Эллисом, возмутившим викторианское общество своими исследованиями сексуального поведения человека. Хинтон-старший был сторонником свободной любви и полигамии и был основателем целого культа. Младший также вел насыщенную личную жизнь: в 1886 году он сбежал в Японию после того, как уголовный суд признал его виновным в двоеженстве. Покинув Японию в 1893-м, он стал преподавать математику в Принстонском университете и изобрел там машину для подачи бейсбольных мячей, в которой, как в пушке, использовался порох. После нескольких несчастных случаев от устройства решили отказаться, а сам Хинтон лишился работы. Зато его беспрестанные попытки донести до общественности свои идеи о четвертом измерении имели больший успех. Он писал о нем для таких журналов, как «Еженедельник Харпера», «Маккларс» и «Наука». Он умер неожиданно от кровоизлияния в мозг в 1907 году во время ежегодного ужина в Обществе филантропических исследований, как только произнес тост за женщин-философов.
Вероятно, именно Хинтон показал Уэллсу возможность использования времени в качестве четвертого измерения. Прямых свидетельств, которые бы это подтверждали, нет, но тем не менее вероятность того, что это правда, высока. Ньюком, несомненно, был знаком с Хинтоном: однажды он устроил Хинтона на работу. Мы не знаем, встречался ли с Хинтоном Уэллс, но на их явную связь указывают косвенные свидетельства. К примеру, термин «научный роман» впервые был использован Хинтоном в заголовке его сборника фантастических эссе 1884 и 1886 годов, а потом Уэллс применил его в отношении собственных рассказов. Более того, Уэллс был постоянным читателем «Природы», в которой в 1885 году публиковался обзор «Научных романов» Хинтона (причем положительный) и обобщались некоторые идеи о четвертом измерении.
Другая межпространственная сага Викторианской эпохи, «Флатландия» Эдвина Э. Эбботта, по всей видимости, также отчасти обязана Хинтону. Она повествует о квадрате, который живет в Евклидовом пространстве, двумерном обществе треугольников, шестиугольников и окружностей, не верящих в существование третьего измерения, пока не попадают в него из-за пролетавшей мимо сферы. Аналогично викторианцы, не верившие в четвертое измерение, могли заблуждаться точно так же. Многие из составляющих романа Эббота очень близки элементам, которые можно обнаружить в рассказах Хинтона.
Физика путешествий во времени по большей части сводится к общей теории относительности с примесью квантовой механики. Волшебники Незримого Университета списывают все на «кванты»: ведь их можно использовать как универсальную карточку «Покиньте тюрьму» в «Монополии» – то есть объяснить практически все, что угодно, каким бы странным оно ни казалось. Даже наоборот, чем оно страннее, тем лучше для квантов. Уже скоро, в восьмой главе, вы получите изрядную порцию квантов. А пока мы подготовим почву, рассмотрев основные положения теорий относительности Эйнштейна – специальной и общей.
Как мы уже объясняли в «Науке Плоского мира», «относительность» – это нелепое название. Здесь было бы правильнее говорить об «абсолютности». Вся суть специальной относительности заключается в том, что не «все относительно», но одна величина – скорость света – неожиданно абсолютна. Зажгите фонарик в движущейся машине, говорит Эйнштейн: скорость света не увеличится оттого, что к ней прибавится скорость машины. Это резко контрастирует со старомодной физикой Ньютона, согласно которой свет движущегося фонарика двигался бы быстрее после прибавления скорости машины к его собственной. А если бросить из машины мяч, то его скорость действительно увеличится. Со светом должно быть то же самое, но этого не происходит. Такие опыты потрясают человеческое восприятие, но показывают, что Круглый мир и в самом деле ведет себя релятивистски. Мы не замечаем, что различия между физикой Ньютона и Эйнштейна становятся заметны лишь тогда, когда скорость приближается к скорости света.
Специальная относительность была неизбежна; ученые не могли не задуматься о ней. Ее корни уходят в 1783 год, когда Джеймс Клерк Максвелл вывел свои уравнения электромагнетизма. Они имеют смысл в «подвижной системе координат» – когда наблюдения ведет движущийся наблюдатель, – и только если скорость света абсолютна. Несколько математиков, в числе которых были Анри Пуанкаре и Герман Минковский, поняли это и опередили Эйнштейна на уровне математики. Однако с точки зрения физики эти идеи были впервые серьезно рассмотрены уже Эйнштейном, который в 1905 году указал на странную природу физических последствий. По мере приближения к скорости света предметы уменьшаются, время замедляется, а масса становится бесконечной. Ничто (ну, или ничто материальное) не может перемещаться быстрее света, а масса способна превращаться в энергию.
В 1908 году Минковский обнаружил простой способ выражения релятивистской физики, ныне известной как пространство-время Минковского. В Ньютоновой физике пространство имеет три неподвижные координаты – влево-вправо, вперед-назад, вверх-вниз. Пространство и время считались независимыми друг от друга. Но в релятивистской физике Минковский принимал время за дополнительную, отдельную координату. Четвертую координату, четвертое независимое направление… четвертое измерение. Трехмерное пространство стало четырехмерным пространством-временем. Но понятие времени Минковского добавило новый виток в старые идеи Д’Аламбера и Лагранжа. Время и пространство могли в некоторой степени меняться местами. Равно как и пространство, время стало геометрическим.
Это видно из релятивистского описания движущейся частицы. В Ньютоновой физике частица находится в пространстве и перемещается с течением времени. Подход Ньютона к природе движущейся частицы похож на просмотр кинофильма. А теория относительности рассматривает ее как последовательность неподвижных кадров, составляющую фильм. Это явно делает теорию относительности детерминистичной. К моменту, когда вы начинаете смотреть фильм, его кадры уже существуют. Прошлое, настоящее и будущее уже в нем. Время течет, фильм идет, мы узнаём, что нам уготовано судьбой – но на самом деле судьба неизбежна и неотвратима. Да, кинокадры, вероятно, могли бы возникать поочередно – так, чтобы самым новым из них всегда был текущий кадр, – но это невозможно делать последовательно для каждого наблюдателя.
Релятивистское пространство-время = геометрический рассказий.
С точки зрения геометрии траектория движущейся точки образует кривую. Представьте, будто частица – это кончик карандаша, пространство-время – лист бумаги, при этом пространство проложено горизонтально, а время – вертикально. Карандаш движется, оставляя за собой след на бумаге. Точно так же частица оставляет за собой в пространстве-времени кривую, называемую мировой линией. Если частица перемещается с постоянной скоростью, мировая линия получается прямой. Частицы, которые перемещаются очень медленно, преодолевают малое расстояние в пространстве за большой промежуток времени – поэтому их мировые линии почти вертикальны. Частицы, которые перемещаются очень быстро, преодолевают большое расстояние в пространстве за малый промежуток времени – поэтому их мировые линии почти горизонтальны. Между ними лежат диагональные мировые линии, которые соответствуют частицам, преодолевающим определенное расстояние в пространстве за равнозначный ему промежуток времени – если измерять его в правильных единицах. Такие единицы выбраны таким образом, чтобы соотноситься посредством скорости света – скажем, если для времени это годы, то для расстояния – световые годы. Что преодолевает расстояние в один световой год за один год времени? Конечно, свет. Тогда диагональные мировые линии соответствуют частицам света, фотонам, или еще чему-нибудь, что перемещается с такой же скоростью.
В рамках теории относительности тела не могут перемещаться быстрее света. Мировые линии таких тел называются времениподобными кривыми. Проходя через заданное событие, эти кривые образуют «световой конус». Хотя на самом деле это как бы два конуса, соединенных острыми концами так, что один направлен вперед, а другой назад. Конус, направленный вперед, описывает будущее события, все точки в пространстве-времени, на которые оно может повлиять. Конус, направленный назад, описывает его прошлое, события, которые могли повлиять на него. Все остальное – запретная территория, все где и когда, которые не имеют никакого отношения к заданному событию.
Пространство-время Минковского называют «плоским», так как оно описывает движение частиц при отсутствии сил, воздействующих на них. Силы влияют на движение, и наиболее значительная среди них – гравитация. Эйнштейн придумал общую теорию относительности, чтобы включить гравитацию в специальную теорию. В Ньютоновой физике гравитация – это сила: она притягивает частицы, не давая им описывать прямые линии, которым они естественно следовали бы, если бы на них не действовали никакие силы. В общей теории относительности гравитация – это геометрическое свойство вселенной, форма искривления пространства-времени.
В пространстве-времени Минковского точки представляют события, имеющие место и в пространстве, и во времени. «Расстояние» между двумя событиями должно отражать, как далеко они находятся друг от друга в пространстве и как далеко они находятся друг от друга во времени. Оказывается, добиться этого можно, если, грубо говоря, взять расстояние между ними в пространстве и вычесть из него расстояние между ними во времени. Полученная таким образом величина называется интервалом между двумя событиями. Если вместо этого сложить данные расстояния, что кажется более очевидным, то пространство и время будут иметь одну и ту же физическую основу. Только здесь есть очевидные различия: в пространстве легко перемещаться свободно, а во времени – нет. Вычет разницы во времени отражает это отличие; математически она представляет время как воображаемое пространство – пространство, помноженное на квадратный корень из минус единицы. Это производит поразительный эффект: если частица перемещается со скоростью света, то интервал между любыми двумя событиями вдоль ее мировой линии будет равен нулю.
Возьмем фотон, частицу света. Понятно, что он перемещается со скоростью света. За один год времени он преодолевает один световой год. Сумма двух единиц равна двум, но интервал вычисляется по-другому. Интервал – это разность 1 × 1, то есть 0. Отсюда следует, что интервал имеет отношение к темпу прохождения, воспринимаемому движущимся наблюдателем. Чем быстрее движется объект, тем медленнее, по его восприятию, движется время. Этот эффект называется замедлением времени. Двигаясь со скоростью, приближающейся к скорости света, вы ощутите, что течение времени замедляется. Если бы вы могли двигаться со скоростью, равной скорости света, время для вас замерло бы. Для фотона время вообще не идет.
В Ньютоновой физике движущиеся частицы, не подверженные воздействию каких бы то ни было сил, описывают прямые линии. Расстояние между точками в них имеет наименьшее значение. В релятивистской физике свободно перемещающиеся частицы имеют интервал с наименьшим значением и двигаются по геодезической линии. Наконец, гравитация действует не как дополнительная сила, а как искажение структуры пространства-времени, изменяющее размер интервала и формы геодезических линий. Этот переменный интервал между ближайшими событиями называется метрикой пространства-времени.
Обычно здесь говорят об «искривлении» пространства-времени, хотя этот термин легко может ввести в заблуждение. Так, это искривление необязательно должно происходить относительно чего-либо. С точки зрения физики кривизна – это сила притяжения, которая приводит к деформации световых конусов.
Одно из ее следствий получило название «гравитационная линза», то есть искривление света крупными объектами. Эйнштейн открыл ее в 1911 году и опубликовал статью об этом в 1915-м. Он предсказал, что гравитация должна искривлять свет вдвое сильнее, чем ей предписывают законы Ньютона. В 1919-м его предсказание подтвердилось, когда сэр Артур Стэнли Эддингтон возглавил экспедицию по наблюдению полного солнечного затмения в Западной Африке. Эндрю Кроммелин из Гринвичской обсерватории возглавил вторую экспедицию в Бразилию. Обе группы наблюдали за звездами, находившимися во время затмения возле края солнечного диска и свет которых не поглощался более ярким светом Солнца. В видимом расположении звезд были замечены небольшие отклонения, подтвердившие предсказания Эйнштейна. Тот на радостях отправил матери открытку: «Дорогая мама, сегодня пришло радостное известие… английская экспедиция действительно показала отклонение света от Солнца». «Таймс» вышла с заголовком: «РЕВОЛЮЦИЯ В НАУКЕ. НОВАЯ ТЕОРИЯ ВСЕЛЕННОЙ. ИДЕИ НЬЮТОНА ОПРОВЕРГНУТЫ». В середине второй колонки напечатали подзаголовок: «ПРОСТРАНСТВО “ИСКРИВЛЯЕТСЯ”». Эйнштейн стал знаменитым за одну ночь.