Фейнмановские лекции по физике. 9. Квантовая механика II - Фейнман Ричард Филлипс 13 стр.


Иначе говоря, функция d(х)обладает тем свойством, что всюду, кроме х=0, она равна нулю, но интеграл от нее конечен и равен единице. Приходится вообразить, что функция d(х) обладает в одной точке такой фантастической бесконечностью, что полная площадь оказывается равной единице.

Как представить себе, на что похожа d-функция Дирака? Один из способов — вообразить последовательность прямо­угольников (или другую, какую хотите функцию с пиком), которая становится все уже и уже и все выше и выше, сохраняя все время единичную площадь, как показано на фиг. 14.2.

Если мы эту функцию подставим в уравнение Шредингера, то увидим, что функция а(х) обязана подчиняться следующему дифференциальному уравнению:

Назад Дальше