Фиг. 12.10. Зависимость тока через переход от приложенного к нему напряжения.
Она демонстрирует нам типичное поведение кристаллических диодов, подобных тем, которые применяются в современных вычислительных машинах. Нужно только заметить, что (12.14) справедливо лишь при невысоких напряжениях. При напряжениях, сравнимых с естественной внутренней разностью потенциалов V (или превышающих ее), в игру входят новые явления и ток уже не подчиняется столь простому уравнению.
Быть может, вы вспомните, что в точности такое же уравнение мы получили, говоря о «механическом выпрямителе» — храповике и собачке [см. гл. 46 (вып. 4)]. Мы получали те же уравнения, потому что лежащие в их основе физические процессы весьма схожи.
§ 6. Транзистор
Пожалуй, самым важным применением полупроводников является изобретение транзистора. Состоит он из двух полупроводниковых переходов, расположенных вплотную друг к другу, и работа его частично опирается на те же принципы, которые мы только что описывали, говоря о полупроводниковом диоде — выпрямляющем переходе. Предположим, что мы изготовили из германия небольшой брусочек, составленный из трех участков: p-область, n-область и опять p-область (фиг. 12.11,а). Такое сочетание именуется p—n—p-транзистором. Ведут себя эти переходы в транзисторе примерно так же, как описывалось в предыдущем параграфе. В частности, в каждом переходе должен наблюдаться перепад потенциала — падение потенциала из n-области в каждую из p-областей. Если внутренние свойства обеих p-областей одинаковы, то потенциал вдоль брусочка меняется так, как показано на фиг. 12.11,б.