Фейнмановские лекции по физике. 8. Квантовая механика I - Фейнман Ричард Филлипс


8. Квантовая механика I

Глава 1

АМПЛИТУДЫ ВЕРОЯТНОСТИ

§ 1.Законы композиции амплитуд

§ 2.Картина интерференции от двух щелей

§ З. Рассеяние на кристалле

§ 4. Тождественные частицы

Повторить:гл. 37 (вып. 3) «Кван­товое поведение» ; гл. 38 (вып. 3) « Соотношение между волновой и корпускулярной точками зрения»

§ 1. Законы композиции амплитуд

Когда Шредингер впервые открыл правиль­ные законы квантовой механики, он написал уравнение, которое описывало амплитуду ве­роятности обнаружения частицы в различ­ных местах. Это уравнение было очень похоже на уравнения, которые были уже изве­стны классическим физикам, они ими пользо­вались, чтобы описать движение воздуха в звуковой волне, распространение света и т. д. Так что в начале развития квантовой механики большую часть времени люди занимались ре­шением этого уравнения. Но в то же время началось (в частности, благодаря Борну и Дираку) понимание тех фундаментально новых идей, которые лежали в основе кванто­вой механики. По мере дальнейшего ее разви­тия выяснилось, что в ней есть много такого, что прямо в уравнении Шредингера не содер­жится,— таких вещей, как спин электрона и различные релятивистские явления. Все курсы квантовой механики по традиции начинают с того же самого, повторяя путь, пройденный в историческом развитии предмета. Сперва долго изучают классическую механику, чтобы потом понять, как решается уравнение Шредингера. Затем столь же долго получают различные решения. И лишь после деталь­ного изучения этого уравнения переходят к «высшим» вопросам, таким, как спин электрона.

Сначала мы тоже считали, что лучше всего закончить эти лекции, показав, как решаются уравнения классической физики в различных сложных случаях, таких, как опи­сание звуковых волн в замкнутом пространстве, типы элек­тромагнитного излучения в цилиндрических полостях и т. д. Таков был первоначальный план этого курса. Но затем мы решили отказаться от этого плана и вместо этого дать введение в квантовую механику. Мы пришли к заключе­нию, что то, что обычно именуют «высшими» разделами квантовой механики, на самом деле совсем простая вещь. Нужная для этого математика чрезвычайно проста — требуются лишь несложные алгебраические операции, никаких дифферен­циальных уравнений не нужно (или в крайнем случае нужны самые простые). Проблема только в том, чтобы перепрыгнуть через одно препятствие: усвоить, что мы больше не имеем права детально описывать поведение частиц в пространстве. И вот этим-то мы и собираемся заняться: рассказать вам о том, что обычно называют «высшими» разделами квантовой механики. Но уверяю вас, это самые что ни на есть простые (в полном смысле этого слова), но в то же время самые фундаментальные ее части. Честно говоря, это педагогический эксперимент, и, насколько нам известно, он никогда раньше не ставился.

Конечно, здесь есть своя трудность: квантовомеханическое поведение вещей чрезвычайно странно. Никто не может пола­гаться на то, что его ежедневный опыт даст ему интуитивное, грубое представление о том, что должно произойти. Так что этот предмет можно представить двояким образом: можно либо довольно грубо , описать, что происходит — сообщать более или менее подробно, что случится, но не формулировать точных законов, либо же можно приводить и точные законы в их абстрактном виде. Но тогда эта абстракция приведет к тому, что вы не будете знать, к чему физически она относится. Этот способ не годится, потому что он совершенно отвлеченный, а от первого способа будет оставаться неприятный осадок, потому что никогда не будет точно известно, что верно, а что нет. И мы не знаем, как эту трудность обойти. С этой проблемой мы уже сталкивались раньше [гл. 37 и 38 (вып. 3)1. В гл. 37 изложение относительно строгое, а в гл. 38 дано лишь грубое описание раз­личных явлений. Теперь мы попытаемся найти золотую сере­дину.

Мы начнем эту главу с некоторых общих квантовомеханических представлений. Кое-какие из этих утверждений будут со­вершенно точными, иные же точны лишь частично. При изложении нам будет трудно отмечать, которые из них какие, но к тому времени, когда вы дочитаете книжку до конца, вы уже сами будете понимать, оглядываясь назад, какие части устояли, а какие оказались только грубым объяснением. Главы, которые последуют за этой, не будут столь неточными. Одна из причин, почему мы пытаемся в последующих главах быть как можно более точными, состоит в том, что таким образом мы сможем продемонстрировать одно из самых прекрасных свойств кван­товой механики — как много в ней удается вывести из столь малого.

Мы опять начинаем с выяснения свойств суперпозиции, наложения, амплитуд вероятностей. Для примера мы сошлем­ся на опыт, описанный в гл. 37 (вып. 3) и еще раз показанный здесь на фиг. 1.1.

Фиг. 1.1. Интерференционный опыт с электронами.

Имеется источник частиц s, скажем электронов; дальше стоит стенка, в которой имеются две щели; за стенкой помещен детектор; он находится где-то в точке х. Мы спраши­ваем: какова вероятность того, что в точке х будет обнаружена частица? Наш первый общий принцип квантовой механики заключается в том, что вероятность того, что частица достигнет точки х, выйдя из источника s, может быть численно представле­на квадратом модуля комплексного числа, называемого ампли­тудой вероятности, в нашем случае — «амплитудой того, что частица из s попадет в х». К этим амплитудам мы будем прибе­гать так часто, что удобно будет использовать сокращенное обозначение, изобретенное Дираком и повсеместно применяемое в квантовой механике, чтобы отображать это понятие. Мы запишем амплитуду вероятности так:

<Частица попадает в х|Частица покидает s> (1.1)

Иными словами, две скобки <>это знак, эквивалентный словам «амплитуда (вероятности) того, что»; выражение справа от вертикальной черточки всегда задает начальное условие, а то, что слева,— конечное условие. А иногда будет удобно еще сильнее сокращать, описывая начальные и конечные условия одной буквой. Например, амплитуду (1.1) можно при случав записать и так:

<x|s>. (1.2)

Надо подчеркнуть, что подобная амплитуда — это, конечно, всего-навсего число — комплексное число.

В гл. 37 (вып. 3) мы уже видели, что, когда частица может достичь детектора двумя путями, итоговая вероятность не есть сумма двух вероятностей, а должна быть записана в виде квад­рата модуля суммы двух амплитуд. Мы обнаружили, что ве­роятность того, что электрон достигнет детектора при обеих открытых амбразурах, есть

В общем случае в амплитуду и в соответствующую вероят­ность входит также и время. В большинстве наших первона­чальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте Р в некоторый момент и вы хотите знать амплитуду того, что она окажется в каком-то месте, скажем г, в более позднее время. Это символически мож­но представить в виде амплитуды <r, t = t1 P, t= 0>. И яс­но, что она зависит и от r, и от t. Помещая детектор в разные места и делая измерения в разные моменты времени, вы получите разные результаты. Эта функция r и t, вообще говоря, удовле­творяет дифференциальному уравнению, которое является волно­вым уравнением. Скажем, в нерелятивистском случае это уравне­ние Шредингера. Получается волновое уравнение, аналогичное уравнению для электромагнитных волн или звуковых волн в газе. Однако надо подчеркнуть, что волновая функция, удовлет­воряющая уравнению, не похожа на реальную волну в простран­стве; с этой волной нельзя связать никакой реальности, как это делается со звуковой волной.

Хотя, имея дело с одной частицей, можно начать пытаться мыслить на языке «корпускулярных волн», но ничего в этом хорошего нет, потому что если, скажем, частиц не одна, а две, то амплитуда обнаружить одну из них в r1 а другую в r2 не есть обычная волна в трехмерном пространстве, а зависит от шести пространственных переменных r1и r2. Когда частиц две (или больше), возникает потребность в следующем добавочном прин­ципе. Если две частицы не взаимодействуют, то амплитуда того, что одна частица совершит что-то одно, а другая сделает что-то другое, есть произведение двух амплитуд — амплитуд того, что две частицы проделали бы это по отдельности. Напри­мер, если <а|s1>есть амплитуда того, что частица 1 перейдет из s1 в а, а <b|s2> — амплитуда того, что частица 2 перейдет из s2 в b, то амплитуда того, что оба эти события произойдут вместе, есть

<a|sl><b|s2>.

И еще одну вещь надо подчеркнуть. Предположим, нам не­известно, откуда появляются частицы на фиг. 1.2, прежде чем они пройдут через щели 1 и 2 в первой стенке. Несмотря на это, мы все равно можем предсказать, что произойдет за стенкой (скажем, вычислить амплитуду попасть в х), если только нам даны два числа: амплитуда попадания в 1 и амплитуда попада­ния в 2. Иными словами, из-за того, что амплитуды последова­тельных событий перемножаются, как это показано в уравнении (1.6), все, что вам нужно знать для продолжения анализа,— это два числа, в данном частном случае <1|s> и <2|s>. Этих двух комплексных чисел достаточно для того, чтобы предска­зать все будущее. Это-то и делает квантовую механику простой. В следующих главах выяснится, что именно это мы и делаем, когда отмечаем начальные условия при помощи двух (или нескольких) чисел. Конечно, эти числа зависят от того, где рас­положен источник и каковы другие свойства прибора, но, как только эти числа даны, все подобные детали нам больше не нужны.

§ 2. Картина интерференции от двух щелей

Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий приме­чательный результат. Если мы заглядывали за щель 1 и заме­чали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в х при одновременном наблюдении этих фотонов, было в точности такое же, как если бы щель 2 была закрыта. Суммарное распределение для элект­ронов, которые были «замечены» либо у щели 1, либо у щели 2, было суммой отдельных распределений и было совсем не похоже на распределение, которое получалось, когда свет бывал вы­ключен. По крайней мере так бывало, когда использовался свет с малой длиной волн. Когда длина волны начинала расти и у нас исчезала уверенность в том, у какой из щелей произо­шло рассеяние света, распределение становилось похожим на то, которое бывало при выключенном свете.

Дальше