Фейнмановские лекции по физике. 7. Физика сплошных сред - Фейнман Ричард Филлипс 10 стр.


Если это уравнение проинтегрировать по х по всей области 3, то мы придем к заключению, что

e0x2x1)=-(Рx2x1). (33.25)

Другими словами, скачок e0Ехпри переходе от области 1 к об­ласти 2 должен быть равен скачку —Рх.

Уравнение (33.25) можно переписать в виде

e0Ex2x2=e0Ex1x1; (33.26)

оно гласит, что величина (e0Exx) имеет равные значения как в области 2, так и в области 1. В таких случаях люди гово­рят, что величина (e0Еxх) непрерывна на границе. Таким образом, мы получили одно из наших граничных условий.

Хотя в качестве иллюстрации мы взяли случай, когда зна­чение Р1 равно нулю, ибо в области 1 у нас был вакуум, ясно, что те же аргументы приложимы для любого материала в этих двух областях, так что уравнение (33.26) верно в общем случае. Давайте перейдем к остальным уравнениям Максвелла и по­смотрим, что скажет нам каждое из них. Следующим мы возьмем уравнение (33.22а). У него нет производной по х, так что оно ничего нам не говорит. (Вспомните, что на границе сами поля не особенно велики. Только их производные по х могут стать столь огромными, что будут доминировать в уравнении.) Взгля­нем теперь на уравнение (33.22.б). Смотрите! Именно здесь у нас есть производная по х! С левой стороны имеется дEz/дx. Пред­положим, что эта производная громадна. Но минуточку терпе­ния! С правой стороны нет ничего, способного потягаться с ней, поэтому Еz не может иметь скачка при переходе из области 1 к области 2. [Если бы это было так, то с левой стороны уравне­ния (33.22а) мы бы получили скачок, а с правой — его не было бы, и уравнение оказалось бы неверным.] Итак, мы получили новое условие:

Eя2=Eя1. (33.27)

После тех же самых рассуждений уравнение (33.22в) дает

Ey2=Ey1. (33.28)

Последний результат в точности совпадает с полученным с по­мощью контурного интеграла условием (33.20).

Перейдем к уравнению (33.23). Единственное, что может дать пик,— это дВх/дх. Но справа опять нет ничего, способного противостоять ему; в результате мы заключаем, что

Bx2=Bx1. (33.29)

И, наконец, последнее из уравнений Максвелла! Уравнение (33.24а) ничего не дает, ибо там нет производных по х. В урав­нении (33.236) — одна производная: — с2(дВz/дх), но ей снова нечего противопоставить с другой стороны равенства, поэтому мы получаем

Bz1=Bz2. (33.30)

Совершенно аналогично второе уравнение, которое дает

By1=By2. (33.31)

Назад Дальше