Фейнмановские лекции по физике. 7. Физика сплошных сред - Фейнман Ричард Филлипс 12 стр.


Вы можете очень эффектно продемонстрировать это. Намажь­те стеклянную пластинку красными чернилами и дайте им вы­сохнуть. Если вы направите пучок белого света на обратную сторону пластинки (фиг. 33.8), то сможете наблюдать проходя­щий красный свет и отраженный зеленый свет.

Фиг. 34.2. Для любой круговой орбиты магнитный момент m равен произведению q!2m на момент количества движения J.

(Хотя эта формула и нерелятивистская, но для атома она должна быть достаточно хороша, ибо у захваченного на орбиту элект­рона отношение v/c в общем случае равно по порядку величины е2/hc=1/137, или около 1%.)

Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положи­тельному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вра­щения. А частота равна скорости, поделенной на периметр орбиты, так что

I=q(v/2pr). Так как площадь равна pr2, то магнитный момент будет

m=qvr/2 (34.2)

Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и mимеют одинаковое направление:

m=(q/2m)J(орбиты). (34.3)

Их отношение не зависит ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движе­ния. Для электрона, заряд которого отрицателен (обозначим его через -qe),

m=-(qe/2m)J(для электрона на орбите). (34.4)

Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой меха­нике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается вер­ным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный мо­мент. Но по чисто квантовомеханическим причинам (классиче­ское объяснение этого совершенно отсутствует) отношение m к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося элект­рона:

Назад Дальше