* Мы рассматриваем h как физическую величину, зависящую от положения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выражено в виде функции соответствующих переменных, Поэтому в новой системе координат мы не отмечаем h штрихом.
Глава 3
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ
§1.Векторные интегралы; криволинейный интеграл от ▽ш
§2.Поток векторного поля
§З. Поток из куба; теорема Гаусса
§4.Теплопроводность; уравнение диффузии
§5.Циркуляция векторного поля
§6. Циркуляция по квадрату; теорема Стокса
§7. Поля без роторов и поля без дивергенций
§8.Итоги
§ 1. Векторные интегралы;
криволинейный интеграл от Сш
В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено довольно много, все их можно подытожить одним правилом: операторы д/дх, д/ду и д/dz суть три компоненты векторного оператора у. Сейчас нам хотелось бы лучше разобраться в значении производных поля. Тогда мы легче почувствуем смысл векторных уравнений поля.
Мы уже говорили о смысле операции градиента (С на скаляр). Обратимся теперь к смыслу операций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих интегральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при разработке общих физических теорий. Для теории полей эти математические теоремы — все равно, что теорема о сохранении энергии для механики частиц. Подобные теоремы общего характера очень важны для более глубокого понимания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как
раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами.
Так как куб считается малым, этот интеграл можно заменить значением Сх в центре грани 1эту точку мы обозначили (1), умноженным на площадь грани DyDz:
Поток сквозь 1 наружу=-Cx(1)DyDz.
Подобным же образом поток наружу через грань 2 равен
Поток сквозь 2 наружу= Cx(2) DyDz.