§ 4. Коэффициент полезного действия идеальной машины
§ 5. Термодинамическая температура
§ 6. Энтропия
§ 1. Тепловые машины; первый закон
До сих пор мы рассматривали свойства вещества с атомной точки зрения, причем мы пытались, хотя бы в общих чертах, понять, что произойдет, если принять, что вещество состоит из атомов, подчиняющихся тем или иным законам. Однако вещество обладает и такими свойствами, которые можно понять, не изучая подробно его строения. Поисками соотношений между различными свойствами вещества, не углубляясь в изучение внутреннего его строения, занимается термодинамика. Исторически термодинамика стала наукой еще до того, как более или менее точно узнали о внутреннем строении вещества.
Приведем пример: согласно кинетической теории, давление газа вызывается молекулярной бомбардировкой, и нам известно, что при нагревании газа бомбардировка усиливается и давление должно повыситься. И наоборот, если внутрь ящика с газом вдвигается поршень, преодолевающий сопротивление бомбардирующих его молекул, то энергия этих молекул возрастает, а соответственно повышается и температура. Итак, повышая температуру внутри заданного объема, мы увеличиваем давление. Если же мы сжимаем газ, то повышается его температура. Используя кинетическую теорию, можно найти количественные соотношения между этими двумя эффектами, однако каждому понятно, что между давлением и температурой обязательно должна существовать некоторая связь, не зависящая от деталей столкновений.
Рассмотрим еще один пример. Многим, наверное, известно интересное свойство резины — если растянуть ее, она нагреется. Если вы зажмете губами резиновую полоску и, потянув рукой, растянете ее, то отчетливо почувствуете, что она нагрелась. Это нагревание обратимо, т. е. если вы, продолжая держать полоску губами, быстро отпустите ее, то возникнет столь же отчетливое ощущение холода. Это означает, что при растяжении резина нагревается, а при ослаблении натяжения она охлаждается. Наш инстинкт может нам подсказать, что нагретая резина тянет лучше: если растяжение нагревает резину, то нагревание заставит ее сжаться. Действительно, если поднести к растягиваемой грузиком резиновой полоске газовую горелку, то мы заметим, что полоска резко сократится (фиг. 44.1).
Фиг. 44.3. Схема тепловой машины.
Карно не уточнил, чему равно это тепло, потому что не знал первого закона и не предполагал, что Q2равно Q1потому что не верил этому. Многие считали, что Q1и Q2одинаковы, так предписывала калорическая теория. Но Карно этого не предполагал, в этом одна из тонкостей его аргументов. Если же использовать первый закон, то мы найдем, что выделенное тепло Q2равно теплу Q1за вычетом совершенной работы:
Q2=Q1-W. (44.3)
(Если бы наш процесс был циклическим и сконденсированная вода поступала бы снова в котел, то после каждого цикла при заданном количестве участвующей в цикле воды поглощалось бы тепло Q1и производилась бы работа W.)
А теперь построим другую машину и посмотрим, не сможем ли мы совершить большую работу при том же количестве тепла, выделяемого при температуре T1. В конденсоре будет поддерживаться та же температура Т2. Мы используем то же тепло Q1 из котла и попытаемся совершать большую работу, чем та, которая была произведена старой паровой машиной. Для этого, быть может, придется использовать другую жидкость, скажем спирт.
§ 3. Обратимые машины
Давайте разберемся в наших машинах получше. Одно из свойств всех машин нам уже известно. Если в машине есть трение, то неизбежны потери энергии. Наилучшей машиной была бы машина вообще без трения. Предположим, что мы имеем дело с теми же идеальными машинами, что и при изучении закона сохранения энергии, т. е. машинами, которым совсем не надо преодолевать трения.