Пойдем дальше; ssкак функция частоты имеет более или менее заметную величину только для w около собственной частоты w0. (Вспомним, что для излучающего осциллятора Q — порядка 108.) Когда со равна w0, осциллятор рассеивает очень сильно, а при других значениях w он почти не рассеивает совсем. Поэтому можно заменить w на w0, а w2-w20 на 2w0(w-w0); тогда
Выражение для средней энергии содержит знаменитый обрезающий множитель, который предвидел Джине, и если использовать его вместо kT в (41.13), то мы получим распределение света в черном ящике:
Итак, мы видим, что при больших w кривая резко идет вниз; хотя в числителе стоит w3, знаменатель содержит е в чрезвычайно высокой степени; на кривой нет никакого намека на подъем, и там, где мы того не ждем, не появляется ни ультрафиолетовых, ни рентгеновских лучей!
Может возникнуть недовольство в связи с тем, что при выводе (41.16) мы пользовались квантовой теорией для уровней энергии гармонического осциллятора, а при определении эффективного сечения ssмы оставались верны классической теории. Но квантовая теория взаимодействия света с гармоническим осциллятором приводит точно к тем же результатам, что и классическая. Это обстоятельство оправдывает то время, которое мы затратили на изучение показателя преломления и рассеяние света, основанное на представлении об атоме как о маленьком осцилляторе, — квантовые формулы получаются точно такими же.
Теперь вернемся к шумам Джонсона в сопротивлении. Мы уже отмечали, что теория мощности шума, по существу, — та же самая, классическая теория излучения черного тела. На самом деле, как мы уже говорили, сопротивление в цепи — это не настоящее сопротивление, а похоже скорее на антенну (антенна ведь тоже похожа на сопротивление, она излучает энергию). Это радиационное сопротивление, и легко подсчитать излучаемую им мощность. Эта мощность равна той мощности, которую антенна получает от окружающего ее света, и мы должны прийти к тому же самому распределению с точностью до одного, двух множителей. Мы можем предположить, что сопротивление — это генератор с неизвестным спектром мощности Р(w). Найти распределение поможет то обстоятельство, что этот генератор, включенный в резонансную цепь произвольной частоты (как на фиг. 41.2, б), порождает на индуктивности падение напряжения, определяемое равенством
(41.2). Это приведет нас к тому же интегралу, что и (41.10), а продолжая работать тем же методом, мы получим уравнение
(41.3). Для низких температур kT в (41.3), конечно, надо заменить выражением (41.15). Две теории (излучения черного тела и шумов Джонсона) физически тесно связаны, так как мы можем связать резонансную цепь с антенной, тогда сопротивление R будет радиационным сопротивлением в чистом виде. Поскольку (41.2) не зависит от физических свойств сопротивления, генератор G для настоящего сопротивления и для радиационного сопротивления будет одинаковым. А что же будет источником генерируемой мощности Р(w), если сопротивление R — теперь просто-напросто идеальная антенна, находящаяся в равновесии с ее окружением при температуре Т? Это излучение в пространстве при температуре Т, которое обрушивается на антенну в качестве «принятого сигнала» и служит эффективным генератором. Следовательно, двигаясь от (41.13) к (41.3), можно найти прямое соответствие между P'(w) и I(w).