Фейнмановские лекции по физике. 2. Пространство. Время. Движение - Фейнман Ричард Филлипс 4 стр.


Ну что ж! Судя по всему, это верно; в настоящее время у нас нет способа узнать, существовала бы центробежная сила, если бы не было звезд и туманностей. Не в наших силах сделать такой эксперимент — убрать все туманности, а затем измерить наше вращение; значит, тут мы ничего сказать не можем. Мы должны допустить, что философ может оказаться прав. Он тогда расцветает от удовольствия и изрекает: «И вооб­ще совершенно необходимо, чтобы все в мире в конечном счете подчинялось тому же принципу: абсолютное вращение — это бессмысленно, можно говорить только о вращении по отно­шению к туманностям». И тут-то мы ему ответим: «А тогда скажи, друг мой, само собой или не само собой разумеется, что равномерное движение по прямой линии относительно туманностей не должно никак чувствоваться внутри авто­мобиля?» И теперь, когда движение уже больше не абсолютное, когда оно стало движением относительно туманностей, вопрос оказывается темным и на него можно ответить, лишь поставив эксперимент.

Но в чем же в таком случае выразились философские влияния теории относительности? Какие новые идеи и предложения внушил физикам принцип относительности? Если ограничиться только этого рода влияниями, то их можно описать следующим образом. Первое открытие, по существу, состояло в том, что даже те идеи, которые уже очень долго держатся и очень точно проверены, могут быть ошибочными. Каким это было большим потрясением — открыть, что законы Ньютона неверны, и это после того, как все годы они казались точными! Теперь, ко­нечно, ясно, что не опыты были неправильными, а просто все они проделывались в слишком ограниченном интервале ско­ростей — таком узком, что релятивистские эффекты невозможно было заметить. И все же теперь мы взираем на наши законы физики куда более смиренно — ведь любой из них может оказаться ошибочным!

Во-вторых, если возникают некие «странные» идеи, вроде того, что когда идешь, то время тянется медленнее и т. д., то неуместен вопрос: нравится ли это нам? Единственно уместен здесь другой вопрос: согласуются ли эти идеи с тем, что по­казал опыт? Иначе говоря, «странные идеи» должны быть согласны только с экспериментом. Единственный резон, почему мы должны обсуждать поведение часов и т. п., состоит в следу­ющем: мы должны доказать, что, хотя определение растяжения времени и очень странно, с нашим способом измерять время оно вполне согласуется.

И наконец, теория относительности подсказала нам еще кое-что; может быть, это был чисто технический совет, но он оказался чрезвычайно полезным при изучении других физи­ческих законов. Совет состоял в том, что надо обращать внимание на симметрию законов, или, более определенно, искать способы, с помощью которых законы можно преобразовать, сохраняя при этом их форму. Когда мы обсуждали теорию векторов, мы отмечали, что основные законы движения не меняются, когда мы особым образом изменяем пространственные и временные переменные (пользуемся преобразованием Ло­ренца). Идея изучать операции, при которых основные законы не меняются, оказалась и впрямь очень полезной.

§ 2. Парадокс близнецов

Чтобы продолжить наше изучение преобразований Лоренца и релятивистских эффектов, рассмотрим известный «пара­докс» — парадокс близнецов, скажем, Петера и Пауля. Подросши, Пауль улетает на космическом корабле с очень высокой скоростью. Петер остается на Земле. Он видит, что Пауль уносится с огромной скоростью, и ему кажется, что часы Пауля замедляют свой ход, сердце Пауля бьется реже, мысли текут ленивее. С точки зрения Петера, все замирает. Сам же Пауль, конечно, ничего этого не замечает. Но когда после долгих странствий он возвратится на Землю, он окажется моложе Петера! Верно ли это? Да, это одно из тех следствий теории относительности, которые легко продемонстрировать. Мю-мезоны живут дольше, если они движутся; так и Пауль про­живет дольше, если будет двигаться. «Парадоксом» это явление называют лишь те, кто считает, что принцип относительности утверждает относительность всякого движения. Они восклицают: «Хе-хе-хе! А не можем ли мы сказать, что с точки зрения Пауля двигался Петер и что именно Петер должен был медленнее стареть? Из симметрии тогда следует единственный возможный вывод: при встрече возраст обоих братьев должен оказаться одинаковым».

Но ведь чтобы встретиться и помериться годами, Пауль должен либо остановиться в конце путешествия и сравнить часы, либо, еще проще, вернуться. А возвратиться может только тот, кто двигался. И он знает о том, что двигался, потому что ему пришлось повернуть, а при повороте на корабле произошло много необычных вещей: заработали ракеты, пред­меты скатились к одной стенке и т. д. А Петер ничего этого не испытал.

Поэтому можно высказать такое правило: тот, кто почув­ствовал ускорение, кто увидел, как вещи скатывались к стенке, и т. д.,— тот и окажется моложе. Разница между братьями имеет «абсолютный» смысл, и все это вполне правильно. Когда мы обсуждали долгую жизнь движущегося мю-мезона, в ка­честве примера мы пользовались его прямолинейным движением сквозь атмосферу. Но можно породить мю-мезоны и в лаборатории и заставить с помощью магнита их двигаться по кругу. И даже при таком ускоренном движении они проживут дольше, причем столько же, сколько и при прямолинейном движении с этой скоростью. Можно было бы попытаться разрешить парадокс опытным путем: сравнить покоящийся мю-мезон с закрученным по кругу. Несомненно, окажется, что закру­ченный мю-мезон проживет дольше. Такого опыта еще никто не ставил, но он и не нужен, потому что и так все прекрасно согласуется. Конечно, те, кто настаивает на том, что каждый отдельный факт должен быть непосредственно проверен, этим не удовлетворятся. А мы все же уверенно беремся предсказать результат опыта, в котором Пауль кружится по замкнутому кругу.

§ 3. Преобразование скоростей

Главное отличие принципа относительности Эйнштейна от принципа относительности Ньютона заключается в том, что законы преобразований, связывающих координаты и времена в системах, движущихся относительно друг друга, различны.

Правильный закон преобразований (Лоренца) таков:

Пусть у нас есть две частицы (к примеру, два протона), которые между собой совершенно одинаковы и движутся на­встречу друг другу с одинаковыми скоростями. Их общий импульс равен нулю. Что с ними случится? После столкновения их направления движения должны все равно остаться противо­положными, потому что если это не так, то их суммарный вектор импульса будет отличен от нуля, т. е. не сохранится. Раз частицы одинаковы, то и скорости их должны быть оди­наковы; более того, они просто должны остаться прежними, иначе энергия при столкновении изменится. Значит, схема такого упругого обратимого столкновения будет выглядеть, как на фиг. 16.2,а: все стрелки одинаковы, все скорости равны. Предположим, что такие столкновения всегда можно подго­товить, что в них допустимы любые углы 0 и что начальные скорости частиц могут быть любыми.

Назад Дальше