Фейнмановские лекции по физике. 2. Пространство. Время. Движение - Фейнман Ричард Филлипс 6 стр.


Итак, мы должны попытаться представить себе предметы в мире нового типа, в котором время с пространством смешано в том же смысле, в каком предметы нашего привычного пространственного мира можно разглядывать с разных направ­лений. Мы должны считать, что предметы, занимающие неко­торое место и существующие некоторый период времени, занимают некую «дольку» мира нового типа и что мы смотрим на эту «дольку» с разных точек зрения, когда движемся с разной скоростью. Этот новый мир, эта геометрическая реальность, в которой имеются «дольки», занимающие некоторое про­странство и существующие некоторое время, называется пространством-временем. Данная точка (х, у, z, t) в простран­стве-времени носит название события. Представьте, напри­мер, что ось х мы поместили горизонтально, оси у и z — в двух других направлениях, взаимно перпендикулярных и перпендикулярных к странице (!), а ось t направили верти­кально. Как на такой диаграмме изобразится, скажем, движу­щаяся частица? Когда частица неподвижна, у нее есть какая-то координата х; время течет, а х остается все тем же, и тем же, и тем же. Значит, ее «путь» — это прямая, параллельная оси (а на фиг. 17.1).

Значит, при таком выборе единиц получится

Скажем, если энергия выражена в электронвольтах (эв), то чему равна масса в 1 эв? Она равна массе с энергией покоя 1 эв, т. е. m0c2=1 эв. У электрона, например, масса покоя равна 0,511·106 эв.

Как же будут выглядеть импульс и энергия в новой системе координат? Чтобы узнать это, надо преобразовать уравнения (17.6). Это преобразование легко получить, зная, как пре­образуется скорость. Пусть некоторое тело имело скорость v, а мы наблюдаем за ним из космического корабля, который сам имеет скорость u, и обозначаем соответствующие величины штрихами. Для простоты сперва мы рассмотрим случай, когда скорость v направлена по скорости и. (Более общий случай мы рассмотрим позже.) Чему равна скорость тела v' по измерениям из космического корабля? Эта скорость равна «раз­ности» между v и u. По прежде полученному нами закону

Назад Дальше