• Немного подождите, пока звезды сами не начнут взрываться. Небольшие (относительно, конечно) взрывы называют «novae», то есть «новыми звездами»; другие, куда более сильные, – «super novae», иначе говоря, сверхновыми. «Новые» в данном контексте означает, что до взрыва мы эту звезду не видели и не подозревали о ее существовании, а потом – ба-бах! Взрыв происходит, в частности, потому, что заканчивается ядерное топливо. Вторая причина в том, что питающие звезду водород и гелий сливаются в более тяжелые элементы, которые фактически становятся примесями, нарушающими ход ядерной реакции. Вот так и получается, что проблема загрязнения окружающей среды затрагивает даже сердца звезд. Физические процессы в таких молодых солнцах меняются, наиболее крупные из них взрываются, производя на свет более тяжелые элементы: йод, торий, свинец, уран и радий. Такие звезды астрофизики называют звездным населением II типа – это старые звезды, в которых содержание тяжелых элементов низкое, но все же они присутствуют.
• Бывает еще один тип сверхновых, чрезвычайно богатый на тяжелые элементы. Из таких звезд складывается более молодое звездное население I типа. Благодаря нестабильности атомов в результате радиоактивного распада химических элементов появляются новые элементы. К таким «вторичным» элементам относится, например, свинец.
• И, наконец, кое-какие люди научились изготавливать некоторые химические элементы в процессе особых экспериментов в атомных реакторах. Самым известным среди таких элементов является материал для производства ядерного оружия – плутоний, побочный продукт обычных урановых реакций. Другие, более экзотические и существующие совсем короткое время, были синтезированы в экспериментальных коллайдерах. На сегодняшний день у нас имеется 114 химических элементов, между тем как сто тринадцатого по-прежнему не хватает. Возможно, был создан и 116‑й элемент, а вот заявка на открытие 118‑го, сделанная в 1999 году Национальной лабораторией имени Лоуренса в Беркли, была отозвана. Физики постоянно спорят, кто первым открыл тот или иной элемент и, соответственно, имеет право присвоить ему имя. Поэтому новым тяжелым элементам присваиваются временные (и курьезные) названия, вроде того, которое получил 110-й элемент – унуниллий: на псевдолатыни это означает «сто десять», то бишь «un-un-nihil».
Подобные недолговечные элементы использовать никак не возможно. Какой же смысл в их синтезе? Ну, примерно такой же, как и в существовании гор: они просто есть. А кроме того, это хорошая возможность проверить на практике некоторые смелые гипотезы. Но прежде всего это шаг навстречу чему-то еще более интересному, если, конечно, оно вообще существует. Иными словами, после того, как вы получили полоний с атомным номером 84, все последующие элементы стали радиоактивными: они испускают частицы, распадаясь на более легкие элементы, и чем больше атомный номер, тем быстрее распад. Однако это не может продолжаться вечно. Мы не умеем создавать точные модели тяжелых атомов. Легких, впрочем, тоже не можем, однако с тяжелыми все еще сложнее.
Многочисленные эмпирические модели (умозрительные гипотезы, основанные на интуиции, догадках и жонглировании константами) привели к созданию удивительно точной формулы, позволяющей рассчитать время жизни элемента с определенным количеством протонов и нейтронов. Для некоторых «магических чисел» соответствующие атомы необычайно стабильны. Магическими числами для протонов являются 28, 50, 82, 114 и 164; для нейтронов – 28, 50, 82, 126, 184, 196 и 318. Например, самый стабильный элемент – это свинец со всеми своими 82 протонами и 126 нейтронами.
Всего в паре шагов от крайне нестабильного элемента номер 112 находится элемент 114, предварительно названный эка-свинец. Его 114 протонов и 184 нейтрона – это, можно сказать, двойная порция магии, и теоретически он должен быть стабильнее большинства своих соседей. Неизвестно, однако, насколько достоверна эта теория, поскольку приближенные формулы стабильности для больших чисел могут не работать. Каждый грамотный волшебник знает, что заклинания иногда дают сбои. Тем не менее, допустив, что с заклинанием у нас все в порядке, мы можем немного поиграть в Дмитрия Ивановича Менделеева и попробовать предсказать свойства эка-свинца путем экстраполяции свойств элементов Периодической таблицы, входящих в его группу (углерод, кремний, германий, олово и свинец). Как следует из названия, эка-свинец должен быть металлом, похожим на свинец, с температурой плавления 70 °C, температурой кипения при нормальном атмосферном давлении 150 °C и плотностью на 25 % большей, чем у обычного свинца.
В 1999 году Институт ядерных исследований в Дубне объявил о синтезе атома элемента 114, хотя его изотоп имел всего лишь 175 нейтронов, то есть до магического числа недотягивал. Но даже такой, он просуществовал целых 30 секунд – невероятно долго для столь тяжелого элемента, а следовательно, магия все еще в силе. Вскоре после этого та же команда объявила о создании целых двух атомов элемента номер 114 со 173 нейтронами. Независимо от физиков из Дубны тот же элемент синтезировали и американские ученые. Тем не менее пока кому-нибудь из них не удастся произвести достаточное количество эка-свинца, а не просто несколько атомов, его свойства останутся для нас загадкой. Впрочем, свойства его ядра, по-видимому, вполне соответствуют теоретическим выкладкам.
Еще дальше находится элемент номер 164 с двойным магическим числом: 164 протона и 318 нейтронов. Все это выглядит так, словно ряд магических чисел можно продолжать… Экстраполяция – неблагодарное занятие, однако даже если в формулу и вкралась ошибка, вполне могут существовать некие конфигурации протонов и нейтронов, которые окажутся достаточно стабильными, чтобы соответствующие элементы появились в реальности. Вернее всего, именно так и возникли на свет черепахиум со слонородом. Кто знает, может быть, где-то ждут своего часа и «пронн» с «ляззгом». А что, если существуют стабильные элементы с гигантскими атомными номерами и размером атомов чуть ли не со звезду? Представим звезду, почти целиком состоящую из нейтронов, образующуюся в ходе коллапса более крупной звезды под действием собственной гравитации. Такие нейтронные звезды должны иметь невероятную плотность: около 40 триллионов фунтов на квадратный дюйм (или 100 миллиардов килограмм на квадратный сантиметр). Это то же самое, что двадцать миллионов слонов, упакованных в ореховую скорлупку! Гравитация на такой звезде в 7 миллиардов раз выше, чем на Земле, а магнитное поле в триллион раз сильнее земного. Частицы в нейтронной звезде находятся так близко друг к другу, что в каком-то смысле она представляет собой один огромный атом.
Какими бы странными они ни были, но некоторые из тяжелых элементов могут таиться в самых неожиданных уголках Вселенной. В 1968 году было высказано предположение, что элементы со 105‑го по 110‑й можно обнаружить в космических лучах – высокоэнергетических частицах, достигающих Земли из глубокого космоса. Однако гипотеза не подтвердилась. Считается, что космические лучи берут свое начало в нейтронных звездах, и вполне возможно, что в таких невообразимых условиях рождаются супертяжелые элементы. Что же случится, если звездное население I типа накопит слишком много таких элементов?
Вероятно, к тому времени астрофизикам придется очень пожалеть, что нумерация поколений звезд идет от III к I: не потребуется ли потом вводить для обозначения таких гипотетических звезд нулевое поколение? Чем черт не шутит, возможно, в будущем во Вселенной обнаружатся объекты, сильно отличающиеся от всего, что нам привычно, и, помимо вспышек новых и сверхновых звезд, мы станем свидетелями более мощных взрывов, каких-нибудь гиперновых. Обнаружатся другие стадии развития, и мы заговорим о звездных поколениях минус I, и так далее. Как мы уже упоминали, в отличие от рационально-неизменного Плоского мира, наша Вселенная придумывает правила по мере надобности.
Глава 9
Получи, собака, кипящую нафту!
КАМУШКИ ВНОВЬ МЯГКО ПОПОЛЗЛИ ДРУГ К ДРУГУ, но, к возмущению Аркканцлера, они двигались какими-то странными извилистыми путями.
– Что и требовалось доказать: гигантская черепаха из камней – это крайне неудачная идея, – со вздохом произнес Главный Философ.
– Ну, ведь уже в десятый раз, – донесся ответный вздох Профессора Современного Руносложения.
– А я предупреждал, что без черепахиума нам не обойтись, – подал голос Аркканцлер.
Результаты предыдущих попыток плавно кружились тут же. Маленькие шарики, большие шары… Некоторые из них уже окутались мантиями из газов, просачивающихся из щелей в беспорядочном нагромождении льда и горных пород, из которых они состояли. Казалось, что у нарождающейся вселенной имеются какие-то собственные соображения насчет своего устройства, но ей никак не удается их сформулировать.
К тому же, как заметил Аркканцлер, как только там появится место, куда сможет поставить ногу приличный человек, ему потребуется чем-то дышать, не правда ли? Нет, атмосферы на шариках появились словно по команде, но что это были за атмосферы? Даже тролль с негодованием отказался бы дышать такой дрянью.
Аркканцлер объявил, что поскольку боги в данном случае отсутствуют – а неоднократные стандартные тесты не выявили ни малейшего следа богорода, – волшебникам придется самим засучить рукава.
Между тем в здании факультета Высокоэнергетической Магии становилось тесновато. Даже студенты крутились неподалеку, тогда как обычно их днем с огнем было не сыскать. Наблюдать за Проектом куда интереснее, чем всю ночь играть с ГЕКСом, поедая бананово‑селедочную пиццу.
В комнату втаскивали все новые и новые столы. Мало-помалу Проект обрастал приборами и приборчиками. Все выглядело так, словно каждый уважающий себя волшебник (кроме разве что Профессора Диковинного Кружевоплетения) решил, что для его работы ему позарез необходим доступ к Проекту. Впрочем, места пока хватало всем. В то время как снаружи Проект был не более чем в фут шириной, пространство внутри его увеличивалось с каждой секундой. В конечном итоге места во вселенной тоже более чем достаточно.
Хотя обычно отдельные невежественные дилетанты яростно ополчались против совершенно невинных магических экспериментов (даже тогда, когда шанс прорвать ткань реальности был меньше, чем один к пяти), никто из собравшихся не возражал абосолютно ничему.
Все же без инцидентов не обошлось…
– Эй вы, двое! Немедленно прекратите орать! – завопил Главный Философ, обращаясь к парочке студентов. Те вели весьма оживленный спор, ну, или по крайней мере озвучивали каждый свою точку зрения, стараясь делать это как можно более громогласно, что в большинстве случаев с успехом заменяет отсутствующие аргументы.
– Но сэр! Я потратил бездну времени на то, чтобы слепить маленький ледяной шарик, а он запустил в него свою треклятую каменюку!
– Я не хотел! – оправдывался второй.
Главный Философ вперился в студента, пытаясь вспомнить его имя. Как правило, он избегал знакомств с учащимися, поскольку считал последних досадной помехой нормальному течению университетской жизни.
– А что именно ты хотел сделать, эээ… мой мальчик? – наконец спросил он.
– Ну, я пытался попасть камушком в газовый шар, сэр. Но он почему-то начал кружиться вокруг этого шара, сэр.
Главный Философ обернулся. Декана поблизости не наблюдалось. Тогда он снова посмотрел на Проект.
– А. Понятно. Что же, очень мило. Все эти полосочки. Кто это сотворил?
Один из студентов поднял руку.
– Ах да, ты, – кивнул Главный Философ. – Молодец, полоски просто чудо. А из чего они?
– Просто собрал вместе немного льда, сэр. Но он вдруг начал нагреваться.
– Да ну? Ледяной шарик стал самопроизвольно нагреваться?
– Шар получился большой, сэр.
– Вы рассказали об этом господину Тупсу? Ему такое может понравиться.
– Да, сэр.
– Хорошо. А зачем ты запулил камнем в газовый шар? – поинтересовался Главный Философ у второго студента.
– Ну-у… Затем, что за каждое попадание тебе присуждают десять очков.
Главный Философ по-совиному взглянул на студентов. Ему все стало ясно. Как-то ночью уважаемому профессору не спалось, и он забрел в здание факультета Высокоэнергетической Магии. Там обнаружилась группа студентов, сгрудившихся у клавиатуры ГЕКСа и выкрикивающих нечто вроде: «А вот я тебя тараном!» или: «Ха! Получи, собака, кипящую нафту!». Но заниматься подобным при сотворении совершенно новой вселенной… Это было по крайней мере неучтиво.
С другой стороны, Главный Философ разделял невысказанную идею своих коллег, что расширять границы познания… Ну, как-то тоже неучтиво, что ли? Границы ведь были установлены не просто так, верно?
– То есть ты утверждаешь, – начал он, – что, столкнувшись лицом к лицу с бесконечным многообразием возможностей, предлагаемых Проектом, вы использовали их для игры?
– Эээ… Ну да, сэр.
– Ох. – Главный Философ подозрительно присмотрелся к большому газовому шару: вокруг него вращалось множество маленьких камешков. – Что же, раз так… Могу я тоже поучаствовать?
Глава 10
Форма вещей
КАЖДЫЙ РАЗ, КОГДА ВОЛШЕБНИК ОБНАРУЖИВАЕТ КАКУЮ-НИБУДЬ НОВУЮ ШТУКОВИНУ, ОН НАЧИНАЕТ С НЕЙ ИГРАТЬ. Ученые поступают так же. Они играют с идеями, которые с точки зрения здравого смысла кажутся абсолютно абсурдными, обычно настаивая при этом, что идеи-то верны, а вот здравый смысл попал впросак. И как ни странно, часто добиваются успеха. Однажды Эйнштейн презрительно обозвал здравый смысл глупостью, но тут он, пожалуй, немного перегнул палку. Наука и здравый смысл все-таки связаны, пусть и не напрямую. Наука приходится здравому смыслу кем-то вроде четвероюродной племянницы. Здравый смысл – это наглядная демонстрация того, какой именно представляется Вселенная существу наших размеров, телосложения и темперамента. В частности, здравый смысл говорит нам, что Земля – плоская. Да, если пренебречь холмами, долинами и прочими ухабами и рытвинами, она действительно выглядит плоской. В конце концов, если бы она не была плоской, мы бы все так бы с нее и посыпались. Однако, несмотря на эти здравые доводы, Земля отнюдь не плоская.
А вот в Плоском мире, напротив, связь здравого смысла и реальности тесна и неразрывна. Здравый смысл говорит волшебникам Незримого университета, что Мир Диска – плоский, и он на самом деле плоский. Чтобы это доказать, им нужно всего лишь подойти к его Краю и посмотреть, как все исчезает за Краепадом. Так в свое время поступили Ринсвинд и Двацветок в «Цвете волшебства»: «Рев зазвучал громче. В нескольких сотнях ярдов на поверхности показался кальмар, который превосходил размерами все, когда-либо виденное Ринсвиндом. Щупальца чудовища бешено колотили по воде, пока оно опять не ушло в глубину… Мир приближался к Краю». Все свалившееся оттуда попадает в Окружносеть – невод размером в десять тысяч миль, протянутый у Края, маленький участок которого, кстати, контролирует морской тролль Тефис. И вот что увидели бы волшебники: «…открывающаяся внизу картина одним рывком перешла в новую, целостную, пугающую перспективу. Там, внизу, торчала слоновья голова, огромная, как средних размеров континент… Под слоном ничего не было, кроме далекого, режущего глаз диска солнца. Мимо Солнца, покрытый чешуйками величиной с город и щербинами кратеров, изрезанный, словно Луна, неторопливо проплывал плавник».
Считается, что древние люди полагали Землю плоской именно по этим очевидным с точки зрения здравого смысла причинам. На самом же деле, согласно сохранившимся записям, уже в древности большинству цивилизаций было известно, что наша планета шарообразна. Ведь корабли возвращались из земель, невидимых за горизонтом, а в небе висели круглые солнце и луна – вполне понятная подсказка.