Успели ли вы повзрослеть с тех пор? Признайтесь, вы прекрасно знаете, про что фильм «Люди в черном», и с нежностью вспоминаете, как в детстве читали «Слон Хортон слышит кого-то» – однако даже сейчас невольно задумываетесь, не существует ли где-нибудь миниатюрная вселенная, выходящая далеко за рамки нашего восприятия.
Нет, дружище, ответ отрицательный – но тут следует задаться несколько более глубоким вопросом: а почему?
Если можно что-то увеличить или уменьшить, не меняя его, значит, перед нами определенного рода симметрия. Те из вас, кто читал «Гулливера», вспомнят, наверное, что стоило нам повстречаться с лилипутами, как Джонатан Свифт пускается в длиннейшие подробнейшие рассуждения обо всем, что следует из разницы в росте между Гулливером и лилипутами, а затем и между Гулливером и великанами-бробдингнегами. Тут Свифт явно перестарался – он пишет соотношении размеров всего на свете, от длины шага до количества местных животных, которое требовалось Гулливеру, чтобы насытиться.
Однако уже во времена Свифта никто не сомневался, что существование таких стран и народов (про говорящих лошадей вообще молчу) противоречит законам физики. Веком раньше Галилео Галилей написал «Две новые науки», где исследовал возможность существования великанов с научной точки зрения. Всласть порассуждав, он сделал вывод, что предположение ложно – лишив таким образом грядущие поколения возможности повеселиться. Беда в том, что кость, увеличиваясь в длину в два раза, становится тяжелее в восемь раз, а ее поверхность увеличивается всего в четыре раза. Так что она сломается, не выдержав собственного веса. Вот как пишет об этом сам Галилей:
Дуб высотой двести локтей не смог бы удержать собственные ветви, будь они распределены так же, как и на дереве обычной высоты; и природа не может породить лошадь в двадцать раз больше обычной лошади или великана в десять раз выше обычного человека, разве что чудом или сильно изменив пропорции его тела, в особенности костей, которые должны быть значительно увеличены по сравнению с обычными.
Вот почему насекомое не боится гравитации – оно может упасть и остаться целым и невредимым, оно может прицепиться к потолку, затратив на удивление мало усилий… Однако есть на свете сила, которой насекомое страшится так же, как млекопитающее – гравитации. Это поверхностное натяжение… Насекомое, которое решило попить, находится в такой же опасности, как и человек, свесившийся с края бездонной пропасти в поисках пропитания. Стоит насекомому попасться в сети поверхностного натяжения воды – то есть попросту намокнуть – и оно, скорее всего, не сможет выбраться и утонет.
На самом деле проблема куда глубже, чем прочность великаньих костей на разрыв и пропорциональная сила насекомых. Все предметы, сопоставимые с размерами человека, вроде бы можно пропорционально уменьшать и увеличивать без особого ущерба – шестиметровый робот-убийца, судя по всему, при совершенно том же устройстве, что и его трехметровая модель, будет работать вдвое лучше, – но если перейти на масштабы атомов и молекул, все прогнозы перестают оправдываться. Мир атомов – это еще и мир квантовой механики, а это означает, что конкретность нашего макроскопического существования внезапно сменяется неопределенностью.
Иначе говоря, сам акт масштабирования не имеет отношения к симметрии природы. Карта космической сети галактик и правда слегка смахивает на изображение нейронов, но это не какая-то великая вселенская симметрия. Это совпадение. Я мог бы и дальше описывать разные случаи симметрии один за другим, но, надеюсь, в общем и целом объяснил, что к чему. Одни изменения имеют значение, другие нет. В этой книге я решил применить вот какой подход: каждую главу посвятить отдельному вопросу, на который, как потом выяснится, есть ответ, пусть и косвенный, и дают его фундаментальные симметрии вселенной.
А с другой стороны – даже правая рука у человека отличается от левой. Одна из главных загадок, над которыми размышляют люди, состоит в том, что в каком-то смысле вселенная не симметрична. Сердце у вас в левой стороне груди, будущее не такое же, как прошлое, вы состоите из вещества, а не из антивещества. Так что эта книга – это книга еще и о нарушенной и несовершенной симметрии, возможно, даже в большей степени, чем о симметрии идеальной. Народная мудрость гласит, что персидский ковер совершенен в своем несовершенстве и идеален в своей неидеальности. Узор на настоящих, традиционных коврах чуть-чуть неточен, и нарушение симметрии придает всему изделию больше индивидуальности. Точно так же происходит и с законами природы – и это прекрасно: идеально симметричная вселенная была бы чудовищно скучной. А нашу вселенную скучной не назовешь.
Вселенная, которую мы видим в зеркале заднего вида, ближе, чем кажется, и это все меняет. Но давайте не будем смотреть назад – мы ведь отправляемся в долгую экскурсию по вселенной. А нашим экскурсоводом будет симметрия, зато когда она нарушится, нам будет о чем написать домой.
Глава первая. Антивещество
Из которой мы узнаем, почему на свете есть что-то, а не ничего
Смотреть научно-фантастические фильмы в надежде узнать что-то новое о науке – затея в целом бессмысленная. В числе прочего вы получите очень искаженное представление, например, о том, как грохочут в космосе взрывы (они бесшумные), как просто развить сверхсветовую скорость (а никак), как много в космосе англоговорящих и не вполне гуманоидных, но все равно дьявольски привлекательных инопланетянок (они все замужем). Однако всяческие «Звездные войны» и «Звездные пути» внушили нам одну очень правильную идею: с антивеществом шутки плохи.
В антивеществе скрыта такая потрясающая мощь, что устоять перед соблазном просто невозможно, и если писатель-фантаст хочет добавить в свое варево «настоящей физики», он почти всегда тянется за щепоткой антивещества: оно придаст весу в глазах читателей. Двигатель космического корабля «Энтерпрайз» работал на взаимодействии вещества и антивещества. Айзек Азимов снабдил своих роботов позитронным мозгом – и превратил позитрон, частицу антивещества, в научно-фантастический макгаффин.
Даже в «Ангелах и демонах» Дэна Брауна – книге, которую едва ли можно причислить к настоящей научной фантастике, – антивещество служит своего рода адской машиной. Злодеи крадут полграмма антивещества – и этого количества хватит, чтобы устроить взрыв, по мощности сопоставимый с первыми ядерными бомбами. Не считая того, что Дэн Браун ошибся в арифметических расчетах в два раза, совершенно не разобрался, что на самом деле происходит в ускорителе частиц, и промахнулся примерно в триллион раз, когда прикидывал, сколько антивещества можно хранить и перевозить, с научной частью у него все в порядке.
Выходит, мы постоянно сталкиваемся с антивеществом – однако совершенно неправильно понимаем, что это такое. Эта субстанция – отнюдь не неостановимый убийца, к которому вы за столько лет привыкли относиться с недоверием. Если антивещество не трогать, оно ведет себя довольно мирно. Антивещество – совсем как обычное вещество, которое вы знаете и любите – например, оно обладает той же массой, – просто наоборот: противоположный заряд и противоположное название. Жареным запахнет, только если смешать антивещество с обычным веществом.
Мало того что антивещество ничем не экзотичнее обычного вещества, оно еще и выглядит и ведет себя совершенно так же практически во всех важных ситуациях. Если бы все частицы во вселенной вдруг оказались заменены своей антиверсией, вы бы ничего не заметили. Проще говоря, в том, как законы физики обращаются с веществом и антивеществом, тоже есть симметрия, и все же они должны быть чуточку разными: ведь и вы, и все ваши знакомые сделаны не из антивещества, а из обычного вещества.
Нам нравится думать, что случайностей не бывает, что есть какая-то глобальная причина, по которой вы не сидите в данный момент в комнате, битком набитой антилюдьми. Чтобы разобраться, в чем тут дело, мы углубимся в прошлое.
Да ну их, антилюдей, сам-то я откуда взялся?
Объяснить, откуда что-то взялось, бывает непросто. Не всегда удается аккуратненько списать все на укус радиоактивного паука, взрыв родной планеты или даже оживление трупа (науки ради, сами понимаете). История нашего собственного происхождения весьма заковыриста, однако вам будет приятно узнать, что мы (совсем как Халк) в конечном итоге – результат воздействия гамма-излучения. Это долгая история.
Физика пока не может ответить даже на вопрос, откуда взялась сама вселенная, зато мы можем многое сказать о том, что было после этого. Рискуя вызвать экзистенциальный кризис, мы можем по крайней мере попытаться ответить на один из величайших вопросов философии, прямо-таки большую шишку из ее пантеона: «Почему на свете есть что-то, а не ничего?»
Вопрос не такой тупой, как может показаться. На основании всего того, что мы наблюдаем в лаборатории, вы существовать не должны. Ничего личного. Я тоже не должен существовать, а также Солнце, галактика Млечный Путь и кино «Сумерки» (по великому множеству причин).
Чтобы понять, почему вы не должны существовать, нам нужно заглянуть в зеркальные вселенные, вселенные из антивещества и нашу собственную вселенную на мельчайшем масштабе. Только на мельчайшем масштабе проявляется разница между веществом и антивеществом, и даже тогда она далеко не очевидна.
Вселенная на мельчайшем масштабе совсем другая. Все, что мы видим, состоит из молекул, самые маленькие из которых размером около миллионной доли миллиметра. Если сравнить это с величинами человеческого масштаба, то человеческий волос имеет толщину примерно в сто тысяч молекул. Да, молекулы очень маленькие, но какими бы они ни были маленькими, они состоят из частиц еще меньших. И это тоже хорошо – если мы заинтересованы в том, чтобы найти в мире хоть какой-то порядок. По данным Королевского химического общества, мы знаем около 20 миллионов разных видов молекул, а новые соединения открывают так часто, что нечего даже и пытаться назвать точное число. Если бы мы не понимали, что молекулы состоят из чего-то еще меньшего, мы бы погрязли в их перечислении.
К счастью для вселенского порядка, если брать все меньший и меньший масштаб, появляются новые структуры. На масштабе меньше десяти миллиардных метра мы начинаем различать отдельные атомы. Химических элементов нам известно лишь 118, и большинство из них в природе не встречается вообще или встречается лишь в ничтожных количествах.
То, что мы видим на макроскопическом масштабе, ничуть не помогает подготовиться к тому, с чем мы сталкиваемся, когда доходим до размера отдельных атомов, потому что именно тогда на сцену выходит квантовая механика. Говорить о квантовой природе реальности я пока не стану, скажу лишь одно: там царит малоприятная неопределенность. Пока что можно не обращать на нее внимания, однако чуть позже придется залезть в это болото по уши.
Даже если не знать в точности, что представляют собой атомы, вполне можно добиться от них толку. Именно это открыл русский химик Дмитрий Менделеев в XIX веке. С его главным достижением вы, скорее всего, знакомы, если хоть раз в жизни забредали в школьный кабинет химии или физики. Менделеев изобрел периодическую таблицу.
Это не просто длинный список. Менделеев доказал, что элементы в каждом столбце таблицы обладают очень похожими химическими свойствами. Например, медь, золото и серебро находятся в одном столбце, и все они металлы с очень большой проводимостью. Заполнив свободные места, Менделеев сумел предсказать свойства элементов до того, как их удалось открыть в лаборатории!
Сама идея о том, что атомы составляют невидимую основу вещества, уже была сформулирована две с половиной тысячи лет назад, хотя и в довольно примитивном виде. Левкипп, Демокрит и древнегреческие атомисты высказали эту идею в V веке до н. э., и можно с легкостью предположить, что мы последние две тысячи лет потратили на то, чтобы она до нас наконец дошла. Лично я считаю, что древним многовато чести.
В целом первые атомисты говорили лишь о том, что бесконечно делить вещество нельзя. Они не представляли себе, как малы атомы, какая у них структура и что их можно делить дальше (несмотря на то, что само слово «атом» буквально означает «неделимый»).
Мы начали хоть сколько-нибудь понимать, что представляют собой атомы, лишь в последние двести лет, и кульминацией этого стал блистательный анализ броуновского движения, который сделал Эйнштейн в 1905 году. За 80 лет до этого ботаник Роберт Броун изучил под микроскопом пыльцу, взболтанную в жидкости. Броун отметил, что сколько он ни дожидался, когда картина успокоится, частички пыльцы продолжали беспорядочно суетиться.
Эйнштейн абсолютно правильно предположил, что отдельные молекулы постоянно толкали частички пыльцы в разные стороны случайным образом – а из этого он сумел сделать вывод, что атомы существуют в реальности, и даже оценить их размер.
Уже одного убедительного доказательства, что атомы должны существовать, было бы более чем достаточно, чтобы сделать Эйнштейна одним из величайших ученых XX века, однако считается, что это всего лишь третье по важности из открытий, которые он сделал на протяжении одного года. Произошло настоящее чудо, пожалуй, еще не было в истории, чтобы гениальные открытия следовали одно за другим с такой частотой, и недаром 1905 год называют «Чудесным годом» в биографии Эйнштейна – именно тогда была опубликована череда статей, в которых ученый не только доказал, что атомы существуют, но и продемонстрировал, что свет состоит из частиц (за что и получил Нобелевскую премию в 1921 году), а также предложил на суд научной общественности пустячок под названием «теория относительности», благодаря которому вы, скорее всего, и знаете его имя.
Поначалу может показаться, что элементарные частицы – это своего рода платоновская абстракция. Они фундаментальны и невидимы. У них нет ни формы, ни размера, ни цвета – словом, никаких макроскопических качеств. Все частицы одного типа идентичны всем другим частицам того же типа и неотличимы от них. То есть кто видел один электрон, тот знает все об электронах – буквально.
Знать, что атомы существуют, – это не все равно, что знать, каковы их свойства, и даже фундаментальные это частицы или нет. (Пункт А. Нет). Чтобы отгадать эту загадку, обратимся к Эрнесту Резерфорду, который в 1911 году занимался тем, что пулялся альфа-частицами (это такое научно-фантастическое по духу название, а теперь-то мы знаем, что на самом деле альфа-частицы – это ядра гелия) в листок золотой фольги.
Нет необходимости распространяться о том, в какие тупики заходила физика, пока мы не обзавелись моделью, которой пользуемся сегодня (неплохой, но не совершенной), однако до Резерфорда никто не имел ни малейшего представления о структуре атома. Господствовала идея, что атом заполнен положительно заряженным «пудингом», нашпигованным «сливами» (электронами).
Резерфордовское рассеяние