Последние «кирпичики» в нее положили юрист Маттиас Якоб Шлейден (1804—1881) и священнослужитель Теодор Шванн (1810—1882). Увлекшись наукой, оба они выучились на медиков, и Шлейден занялся физиологией растений, а Шванн – исследованием строения спинной струны (основного органа нервной системы) животных из отряда круглоротых, в том числе миног. Шлейден методично просматривал срезы самых разных растений, выискивая ядра, а затем оболочки, и за пять лет доказал, что все органы растений имеют клеточную природу. Однако, описывая возникновение клеток, ученый предположил, что каждая новая клетка развивается внутри старой, что было в корне неверно, поэтому сформулировать основные постулаты клеточной теории ему так и не удалось. Зато удалось Шванну. Познакомившись со Шлейденом в Берлине, Шванн часто беседовал с ним на научные темы. И вот однажды, во время обеда, Маттиас указал Теодору на важную роль ядра в развитии растительных клеток. По воспоминаниям Шванна, «я тотчас припомнил, что видел подобный орган в клетках спинной струны, и в тот же момент понял, насколько важно показать: в клетках спинной струны ядро играет ту же роль, что и ядра растений в развитии их клеток…».
Шванн всерьез озаботился вопросом: можно ли говорить о едином законе клеточного строения для всего живого? Ведь наряду с исследованиями, доказывавшими клеточное строение животных тканей, были работы, в которых это заключение категорически оспаривалось. Делая срезы костей, зубов и ряда других тканей животных, ученые никаких клеток не видели.
Усилия Теодора оказались не напрасны. Уже через два года вышла в свет его книга «Микроскопические исследования о соответствии в структуре и росте животных и растений», где были изложены основные идеи клеточной теории. Шванн не только первым увидел в клетке то, что объединяет животные и растительные организмы, но и обнаружил сходство в развитии всех клеток.
Дальнейшие исследования показали, что можно найти организмы, которые состоят из громадного числа клеток; организмы, состоящие из ограниченного числа клеток; наконец, такие, все тело которых представлено всего одной клеткой. Бесклеточных организмов в природе не существует. Позже было установлено, что каждая клетка возникает путем деления предшествующей ей материнской клетки: в 1855 г. немецкий биолог Рудольф Вирхов четко сформулировал это правило в афоризме «Каждая клетка – только из клетки».
Вирхов изучал значение клетки для организма и ее роль при заболеваниях. Работы ученого о болезнях послужили базой для новой дисциплины – патологической анатомии. Именно он ввел понятие клеточной патологии, однако в своих исканиях несколько перегнул палку. Представляя живой организм как «клеточное государство», Вирхов считал клетку полноценной личностью: «Клетка… да, это именно личность, притом деятельная, активная личность, и ее деятельность есть… продукт явлений, связанных с продолжением жизни».
Шли годы, развивалась техника, появился электронный микроскоп с увеличением в десятки тысяч раз. Было подробно описано деление, открыты клеточные органеллы, описаны биохимические процессы в клетке, наконец, расшифрована структура ДНК. Казалось бы, ничего нового о клетке уже не узнать. И все же осталось еще много непонятого, неразгаданного, и наверняка будущие поколения исследователей добавят новые «кирпичики» в построение науки о клетке.
Деление клеток
Как образуются клетки? Этим вопросом впервые задались Маттиас Якоб Шлейден и Теодор Шванн. Шлейден выдвинул теорию свободного клеткообразования из слизи, заключенной в существующих клетках. Шванн поначалу поддерживал эту мысль, однако, как ни старался, не мог найти убедительных картин рождения новых клеток внутри старых (нечто подобное обнаружилось только в хряще и хорде). Поэтому у него возникло предположение, что новые клетки появляются не только в старых, но еще и в особом межклеточном веществе – цитобластеме.
Надо заметить, в то время уже было известно о размножении клеток путем деления. В 1832 г. Б. Дюмортье наблюдал за делением клеток у нитчатых водорослей. А три года спустя этот процесс был описан в труде Г. Моля. Изучая водоросли Conferva glomerata, Моль обнаружил перешнуровку протоплазмы и образование перегородки между дочерними клетками, более того – определил различные стадии деления, но, к сожалению, упустил из виду ядро. Не сумев обобщить результаты своих наблюдений, Моль так и не создал на их основе новую теорию клеткообразования.
Первым возразить Шлейдену осмелился русский ботаник Николай Железнов (1816—1877). Работая над диссертацией, он наблюдал за развитием волосков традесканции и не заметил ничего подобного тому, что описал Шлейден, – новые клетки рождались путем разделения материнской клетки перегородками. Не подтвердил Железнов и обязательного, по мнению Шлейдена, первичного образования ядрышка («центрального тела»). Вдобавок ученый заявил, что клеточные процессы в растительном и животном царствах одинаковы.
Вслед за Железновым развенчивать шлейденовскую теорию взялся анатом и ботаник Франц Унгер (1800—1870). В своей работе о размножении клеток в точке роста растений он подчеркнул, что клетки образуются не свободной кристаллизацией из «слизи», а путем деления, или «почкования», ранее существующих клеток. Впоследствии Унгер еще не раз возвращался к проблеме клеткообразования, но так и не решился окончательно опровергнуть теорию Шлейдена. В «Основах анатомии и физиологии растений» он описал первичное и вторичное клеткообразование, под первым подразумевая «возникновение» клеток без посредничества ранее существовавших структур, а под вторым – «размножение».
Ознакомившись с работами Унгера, Шлейден внес во 2-е издание «Основ ботаники» описание клеточного деления наряду со своей теорией клеткообразования. Правда, понятие о делении в то время было расплывчатым. Основной частью клетки считалась оболочка, поэтому исследователи говорили о делении лишь в тех случаях, когда видели образование клеточной перегородки. Если же оболочка была неясной, то есть клетка выглядела «голой», ученые употребляли термин «свободное клеткообразование», хотя речь шла тоже о делении.
Эта путаница встречается, в частности, в работах ботаника и натурфилософа Карла Негели (1817—1891), чьи исследования сыграли особенно важную роль в опровержении шлейденовской теории. Рассматривая разные группы растений, Негели доказал, что «клеточные ядра существуют во всех клетках», – и этим нанес сокрушительный удар по идеям Шлейдена, который полагал, будто новые ядра рождаются в процессе клеткообразования. По словам Негели, «часть содержимого клетки изолируется, становится шарообразной или эллипсоидальной и порождает по всей поверхности мембрану. Мембрана возникает не вокруг клеточного ядра, а вокруг содержимого. Кроме того, содержимое принимается за первичное, а мембрана за вторичное». Это открытие стало большим шагом вперед на пути к разгрому шлейденовской теории цитогенеза.
В итоге благодаря исследованиям Моля, Железнова, Унгера и Негели идеи Шлейдена утратили авторитет в ботанике, а вместо этого утвердилось представление, что образование клеток растений происходит, как правило, путем деления.
В гистологии животных теория цитобластемы продержалась дольше. С критикой представлений о свободном образовании клеток в некоем межклеточном веществе первым выступил московский зоолог Николай Варнек (1821—1897). О его лекциях физиолог Иван Сеченов отзывался так: «Читал он просто и толково, останавливаясь преимущественно на общих признаках принятых в зоологии отделов, а описанию одноклеточных предпосылал длинный трактат о клетках. Последнее учение падало на неподготовленную почву – Москва еще не думала тогда о микроскопе, поэтому у студентов Варнек не пользовался успехом, а в насмешку они даже прозвали его Клеточкой. Много позднее я узнал, что Варнек и известный ботаник Ценковский были из числа первых русских биологов, работавших с микроскопом».
Варнеку принадлежит ряд ценных микроскопических исследований, значение которых не было понято его современниками. Описывая клетки печени ракообразных, Варнек отметил, что «ядро здесь вполне развито и занимает по большей части центр молодой клеточки. Свободных ядер я не замечал и поэтому не могу согласиться с мнением Шванна о способе образования клеток. Если бы свободные ядра действительно были, то их можно было бы видеть в веществе, связывающем клетки, то есть в межклетниках. Последние здесь очень велики, часто весьма разнообразной формы, но всегда наполнены веществом без ядер». Поэтому Варнек считал неверным мнение, «будто бы ядро развивается самостоятельно и вне клеточки, как собрание элементарных частиц цитобластемы. Если в разрушенной ткани мы встречаем свободные ядра, то из этого еще не следует, что ядра эти произошли вне клеточек, независимо от них».
Постепенно выяснилось, что процесс дробления яйцеклетки – это ряд повторяющихся делений, однако морфологическое значение бластомеров (дочерних клеток яйцеклетки) долгое время оставалось неясным.
Наиболее четкая формулировка процесса дробления яйцеклетки была сделана Альбертом Кёлликером (1817—1905), которого справедливо считают одним из основоположников современной гистологии. Работая помощником профессора анатомии в Берлинском университете, Кёлликер напечатал работу о развитии головоногих моллюсков, где указал, что «шары дробления (бластомеры) составляют в совокупности тело эмбриона и путем бесчисленных делений дают вторичные клетки», то есть клетки различных тканей зародыша.
Клеточный характер бластомеров и их образование путем деления показаны и в работе Варнека, посвященной развитию брюхоногих моллюсков. В этом труде впервые были изображены процессы созревания и оплодотворения, а также начальные стадии дробления. Так, к середине XIX в. было установлено, что на ранних этапах эмбрионального развития клетки рождаются не из цитобластемы, а за счет деления первичной яйцеклетки.
Что же касается деления тканевых клеток у животных организмов, то честь его открытия принадлежит Роберту Ремаку (1815—1865), который прославился не только исследованиями в области эмбриологии и цитологии, но и открытием безмякотных волокон симпатической нервной системы. Изучая кровяные клетки зародышей, Ремак описал процесс клеточного деления элементов крови, а впоследствии проследил весь цикл эмбрионального развития и показал, что деление – это единственный способ возникновения новых клеток в животном организме.
В 1852 г. вышла статья Ремака, ставшая важным этапом в развитии клеточного учения. Наблюдая развитие животных организмов от начала и до конца, Ремак видел, что новые клетки у них образуются неизменно путем деления, так же, как и в тканях растений. «Эти результаты имеют столь же близкое отношение к патологии, сколь и к физиологии», – сделал вывод ученый. И действительно, понимание механизма клеточного образования стало отправной точкой для создания целой науки о строении, функционировании, размножении и старении клеток – цитологии.
Гомеостаз
Гомеостаз – один из четырех важных принципов современной биологии, наряду с эволюцией, генетикой и клеточной теорией. Основная идея умещается в короткую фразу: организмы сами регулируют свою внутреннюю среду.
Впервые идею гомеостаза выдвинул Клод Бернар (1813— 1878), плодовитый ученый, который добился серьезных успехов в понимании физиологии, невзирая на то, что любовь к вивисекции разрушила его первый брак. Однако истинная важность гомеостаза, названного им milleu interieur, была признана спустя десятилетия после смерти Бернара.
В чем же состояло открытие ученого? Он считал, что для живого организма существуют «две среды: внешняя, в которую помещен организм, и внутренняя, в которой живут элементы тканей». В 1878 г. Бернар сформулировал концепцию, согласно которой внутреннюю среду составляет не только кровь, но также все происходящие из нее плазматические и прочие жидкости. «Внутренняя среда, – писал ученый, – образуется из всех составных частей крови: азотистых и безазотистых, белковины, фибрина, сахара, жира… за исключением кровяных шариков, которые являются самостоятельными органическими элементами». Главным свойством внутренней среды Бернар считал то, что она находится «в непосредственном соприкосновении с анатомическими элементами живого существа». А значит, изучая физиологические свойства этих элементов, необходимо учитывать их зависимость от окружающей внутренней среды.
Ученый справедливо считал, что все явления жизни обусловлены конфликтом между существующими силами организма (конституцией) и влиянием внешней среды. В любом организме постоянно происходят процессы синтеза и распада, в результате чего мы приспосабливаемся, адаптируемся к условиям среды.
Согласно работам Бернара, все физиологические механизмы служат сохранению постоянства условий во внутренней среде. То есть организм должен совершенствоваться так, чтобы внешние изменения в каждое мгновение компенсировались бы и уравновешивались. А для этого ему необходимы вода, кислород, питательные вещества и определенная температура.
Правда, независимость от внешней среды, о которой говорил Бернар, весьма относительна. Внутренняя среда тесно связана с внешней. Более того, она сохранила многие свойства той первичной среды, в которой зародилась жизнь. Земные существа словно «замкнули» морскую воду в кровеносные сосуды, превратив изменчивую внешнюю среду во внутреннюю, постоянство которой охраняется специальными механизмами.
Бернар объяснял, что между внутренней средой и тканями идет безостановочный обмен разнообразных веществ. Внутренняя среда создается самим организмом, и постоянство ее состава поддерживается органами пищеварения, дыхания, выделения, которые «готовят для клеток общую питательную жидкость». Деятельность этих органов регулируется нервной системой с помощью специально вырабатываемых веществ. В этом «заключается круг взаимных влияний, образующих жизненную гармонию».
Таким образом, Бернар еще во второй половине XIX в. дал правильное научное определение внутренней среды организма, выделил ее элементы, описал состав, свойства, эволюцию и подчеркнул ее значение в обеспечении жизнедеятельности организма.
Впрочем, чтобы оценить эту идею, науке понадобилось почти 50 лет. В статье о Бернаре в энциклопедии «Британника» за 1911 г. вообще не упоминается о гомеостазе, а шестью годами позже в той же обновленной энциклопедической статье гомеостаз называется «важнейшим достижением эпохи».
В отличие от Бернара, чьи выводы базировались на биологических обобщениях, американский физиолог Уолтер Кеннон (1871—1945) действовал на основе экспериментов. Ученый обратил внимание на то, что жизнь животного и человека, несмотря на довольно частые неблагоприятные воздействия, протекает нормально в течение многих лет. По его мнению, постоянные условия, поддерживаемые в организме, можно было бы назвать равновесием, однако за этим словом уже закрепилось другое значение. Термином «равновесие» обозначают такое состояние изолированной системы, в котором все силы взаимно сбалансированы, а потому параметры системы не зависят от времени, к тому же там отсутствуют потоки вещества или энергии. В организме же протекают сложные физиологические процессы, обеспечивающие устойчивость его состояний, – примером может служить согласованная деятельность мозга, нервов, сердца, легких, почек и других органов и систем. Такие состояния Кеннон предложил называть гомеостазом.
Это слово вовсе не предполагает нечто застывшее и неподвижное. Оно означает условия, которые могут меняться, но все же оставаться относительно постоянными. О полной стабильности тут речи не идет, наоборот, все процессы в организме динамичны и изменчивы, однако в норме колебания физиологических показателей жестко ограничены. Кеннон показал, что все обменные процессы – температура тела, концентрация глюкозы и минеральных солей в плазме крови, давление в сосудах – колеблются в очень узких пределах вокруг некоторых средних величин (физиологических констант). Поддержание этих констант в организме и есть обязательным условием существования.
Кроме того, ученый выделил основные компоненты гомеостаза: материалы, необходимые для роста, восстановления и размножения (глюкоза, белки, жиры, вода, хлориды натрия, калия и другие соли; кислород; регуляторные соединения), а также физико-химические факторы, влияющие на клеточную активность (осмотическое давление, температура, концентрация водородных ионов и пр.). Не так давно к этой классификации были добавлены механизмы, обеспечивающие структурное постоянство внутренней среды и структурно-функциональную целостность всего организма: наследственность, регенерация, иммунитет.
В теории Кеннона особенно ценно то, что живые организмы рассматриваются как открытые системы, имеющие множество связей с окружающей средой. Эти связи осуществляются посредством органов дыхания и пищеварения, поверхностных рецепторов, нервной и мышечной систем и др. Изменения в окружающей среде прямо или косвенно воздействуют на указанные системы, вызывая в них соответствующие изменения. Однако эти воздействия обычно не сопровождаются большими отклонениями от нормы и не вызывают серьезных нарушений в физиологических процессах.