Этот правый, левый мир - Гарднер Мартин 2 стр.


Упражнение 3. Можете ли вы сказать, почему во всем мире в основном используется правая резьба?

Посмотрите вокруг себя, и вы будете удивлены тем, сколь многие предметы, сделанные человеком, в целом симметричны, хотя бы внешне. В некоторых случаях предметы, кажущиеся симметричными на первый взгляд, при ближайшем рассмотрении таковыми не оказываются. Например, ножницы. Их лезвия могут в принципе пересекаться двумя различными способами — один зеркальное отражение другого. Большинство ножниц сделано с расчетом на то, что человек будет пользоваться ими, держа их в правой руке. Если вы не левша, то знаете, как неудобно стричь ногти на правой руке, держа ножницы в левой. Дело не только в том, что вы правша и левой рукой вам работать вообще неудобно: ножницы сделаны для пользования ими правой рукой, а вы держите их левой. Нажимать при этом на ручки так, чтобы ножницы резали как следует, очень неловко. В связи с этим выпускаются специальные ножницы для портных-левшей и вообще всех «леворуких» людей, которым часто приходится работать с ножницами.

Симметричен ли автомобиль? В общих чертах да, но, присмотревшись к деталям, например к расположению рулевого колеса, мы увидим, что это, конечно, не так. Энантиоморфом американских автомобилей являются, например, английские, которые приспособлены для левостороннего движения, поэтому руль у них справа. А симметричен ли самолет, летящий высоко в небе? Днем — да, но не ночью, когда на его левом крыле загорается зеленый огонь, а на правом — красный. Симметричен ли электрический вентилятор? Нет, потому что его лопасти вырезаны из винтовой поверхности. Если заменить их энантиоморфными лопастями, вентилятор будет гнать воздух назад, а не вперед. Винты самолетов и кораблей также асимметричны. Как вы думаете, симметричен кусок веревки? Может быть. Присмотритесь повнимательнее. Если она состоит из крученых ниток, значит, симметрия отсутствует, скрученная нитка — та же спираль, а в зеркальном отражении она будет закручиваться в другую сторону.

Упражнение 4. Какие из перечисленных ниже предметов асимметричны?

1. Хоккейная клюшка.

2. Спиннинг.

3. Машинка для точки карандашей.

4. Вилка.

5. Серп.

6. Саксофон.

7. Разводной гаечный ключ.

Лист Мёбиуса — хорошо известный топологический курьез — асимметричен. Если вы закрутите полоску бумаги на полоборота и склеите концы, то получите поверхность, у которой только одна сторона и только один край. Но это закручивание на полоборота можно сделать двояким способом — вправо или влево. Изогнете в одну сторону — получите лист Мёбиуса одного типа. Изогнете в другую — получите его энантиоморф.

Простой узел, завязанный на замкнутой веревочной петле, тоже может быть правым и левым. На рис. 12 изображена пара таких энантиоморфных узлов. Как бы вы ни старались, вам не удастся превратить узел в его зеркального близнеца. Обращали ли вы когда-нибудь внимание на то, что, скрещивая руки на груди, вы «завязываете себя» именно в такой узел? Следующий наглядный пример поможет вам понять это. Разложите перед собой на столе или дайте кому-нибудь подержать кусок веревки длиной около метра. Скрестите руки, взяв предварительно веревку за концы; теперь разъедините руки. Раньше у вас они были «завязаны узлом», теперь узел перейдет на веревку. В зависимости от того, как вы сложите руки, получится «правый» или «левый» узел. Отложите в сторону завязанный конец веревки и проделайте то же самое с другим концом, но теперь сложите руки «по-другому». Получившийся узел будет зеркальным отражением первого. Если вы проделаете все это перед зеркалом, то увидите, что ваш энантиоморф в зеркале и руки-то складывает «по-другому» и узел у него получается другой — если у вас левый, то у него правый, и наоборот.

Может быть, теперь, имея за плечами это краткое введение в теорию симметрии отражения, вы сможете ответить на вопрос, заданный в гл. 1: почему зеркало меняет местами правую и левую стороны, а не низ и верх?

Любопытно, что ответ определяется тем фактом, что наши тела, так же как и тела большинства животных, обладают только одной плоскостью симметрии. Она проходит, конечно, вертикально, через центр тела и разделяет его на две зеркальные половинки. Это справедливо только приближенно. В гл. 1 мы говорили, что в каждом лице есть незначительные асимметричные детали. Внутреннее строение тела обнаруживает, конечно, более существенную асимметрию — сердце у нас слева, аппендикс справа и т. д. (В последующих главах мы обсудим асимметрию живых существ более подробно.) Но внешне животные и люди обладают двусторонней симметрией, когда левая половина тела есть зеркальное изображение правой. Между передней и задней сторонами тела такого сходства не существует, нет его и между верхней и нижней частями. По этой причине, а также потому, что благодаря земной гравитации все предметы притягиваются вниз, мы создаем тысячи вещей (стулья, столы, комнаты, здания, автомобили, поезда, самолеты и т. д.), обладающих внешне и в среднем билатеральной симметрией. В зеркале мы видим своего двойника, стоящего посреди комнаты-двойника. Когда мы двигаем правой рукой, он двигает левой. Мы говорим, что зеркало меняет местами правую и левую стороны, лишь потому, что так нам удобнее всего обозначать различие между билатерально симметричной фигурой и ее энантиоморфом. В строгом математическом смысле зеркала «переставляют» не правую и левую, а переднюю и заднюю стороны!

Чтобы понять это, еще раз представьте себя стоящим перед зеркалом во всю стену комнаты. Вы смотрите прямо перед собой, и слева у вас запад, а справа восток. Пошевелите «западной» рукой. При этом у зеркального изображения тоже движется «западная» рука. Подмигните «восточным» глазом. Отражение тоже мигает «восточным» глазом. Голова у вас вверху, а ноги внизу. И у отражения голова вверху, а ноги внизу. Другими словами, оси восток — запад и верх — низ сохраняют свое направление в 3-пространстве. Изменяет свое направление ось вперед — назад, идущая с юга на север и перпендикулярная зеркалу. Вы стоите лицом к северу, отражение — лицом к югу. Проведите на полу мелом линию с юга на север перпендикулярно зеркалу и отметьте на ней точки, последовательно пронумеровав их с севера на юг: 1, 2, 3 и так далее до 10. В зеркале эти точки идут с севера на юг в обратном порядке: 10, 9, 8, 7 — до единицы. Говоря математически, зеркало не изменило оси слева — направо и вверх — вниз, а вот оси вперед — назад оказались направленными в противоположные стороны. Мы говорим, что зеркало меняет местами правую и левую стороны только потому, что при этом представляем самих себя стоящими за зеркалом.

Чтобы понять это яснее, скомандуйте себе «Направо!» и встаньте лицом на восток, касаясь зеркала левым плечом. Как и раньше, зеркало обращает только ось, перпендикулярную его поверхности. Когда вы так стоите, эта ось проходит у вас слева направо. Теперь вы можете сказать, что зеркало переставляет правую и левую стороны в точном геометрическом смысле, оставляя без изменения оси, направленные вперед-назад и вверх-вниз.

Представьте зеркало, вделанное в потолок или в пол. Это зеркало, как всегда, переворачивает только ту ось, которая находится под прямым углом к его поверхности. В данном случае это ось верх — низ. Это зеркало не меняет положения в пространстве правой и левой сторон или задней и передней, и вы в нем оказываетесь перевернутыми вверх ногами. Однако, представив себя стоящим на голове за зеркалом, вы заметите, что ваш двойник все-таки двигает правой рукой, когда вы двигаете левой. Хотя зеркало переставляет только верх и низ, вам как билатерально симметричному созданию по-прежнему удобно описывать зазеркальный мир, говоря, что там правое стало левым, и наоборот. Независимо от того как зеркало преобразует ваш мир, при отражении его, представив себя в таком преображенном мире, вы каждый раз видите, что правая и левая стороны у вас поменялись местами, и соответственно описываете происшедшую перемену.

Подведем итоги. Когда мы смотрим прямо в зеркало, то не обнаруживаем решительно никаких изменений ни справа, ни слева, ни вверху, ни внизу. Но отражаемый предмет оказывается «вывернутым» вдоль оси, перпендикулярной плоскости зеркала, при этом асимметричная фигура автоматически заменяется на энантиоморфную. Поскольку сами мы существа билатерально симметричные, то находим удобным называть это взаимопревращением правого в левое. Это просто манера выражаться, способ употребления слов.

«Магические зеркала», описанные в гл. 1, которые дают «неперевернутое» изображение, в действительности меняют направление двух осей фигуры! Как обычные зеркала, они меняют местами направления «назад» и «вперед», но в отличие от обычных зеркал они переставляют к тому же правую и левую стороны. Двойное отражение вдоль двух разных осей не превращает фигуру в ее энантиоморфа. Подмигнув перед таким зеркалом правым глазом, вы видите, что отражение моргает глазом, расположенным в левой части зеркала. Воображая, что это вы стоите за зеркалом, повернувшись лицом в другую сторону, вы и говорите, что отражение тоже подмигнуло правым глазом и что никакого превращения не произошло. Если магическое зеркало повернуть на четверть оборота, оно по-прежнему будет обращать ось вперед — назад, но вторая ось, с которой происходит такое же преобразование, теперь окажется направленной сверху вниз, и вы видите ваше лицо перевернутым. Перевернутым, но не зеркально отраженным. Представив себя за зеркалом вниз головой, вы увидите, что, когда вы мигаете левым глазом, «он» тоже мигает левым.

Если вам все это покажется запутанным, то перечитайте последние семь абзацев несколько раз и все как следует обдумайте и тогда вам станет совершенно ясным, что происходит с асимметричными предметами при их отражении в обычных и магических зеркалах. В качестве разрядки, прежде чем перейти к рассмотрению более серьезных вопросов, мы в следующей главе расскажем о нескольких простых фокусах и трюках, в которых используются некоторые высказанные выше идеи.

Существует много фокусов и «магических» трюков, которые в занимательной форме иллюстрируют принципы симметрии и асимметрии, обсуждавшиеся в предыдущих главах.

Довольно эффектен следующий простой фокус: на листке бумаги нужно написать буквами высотой примерно 1 сантиметр два слова: «ЧАЙ», и «КОФЕ» — одно из них напишите зачерненными буквами, другое — красными. Затем, налив в пробирку воды, подкрашенной синькой, предложите кому-нибудь посмотреть на эти слова через стекло. Попросите его объяснить, почему эта самодельная цилиндрическая линза переворачивает только зачерненные буквы, а красные не переворачивает (рис. 13).

Если эта просьба вызовет затруднение, «объясните» сами, что черный и белый цвета имеют разную длину волны, им соответствуют разные коэффициенты преломления и т. д. Удивительно, как много людей попадается на эту удочку, а ларчик, конечно, открывается просто. Слово «КОФЕ» переворачивается нисколько не хуже, чем «ЧАЙ», но этого никто не замечает, поскольку буквы «К», «О», «Ф» и «Е» имеют горизонтальную ось симметрии и при зеркальном обращении сохраняют свой вид.

Известно, что буквы с вертикальной осью симметрии не меняются при отражении в зеркале. Поэтому, поднеся к зеркалу рис. 14, вы увидите, что имя НАТАША не изменилось, а имя ИГОРЬ перевернулось. Можете продемонстрировать это друзьям, сказав, что у вас есть зеркало, которое переворачивает при отражении только текст, напечатанный черным по белому, но не белым по черному!

Многие слова при отражении в зеркале превращаются в другие слова, например «bum» в «mud». Вырежьте эти три буквы из бумаги (чем крупнее, тем лучше) и наклейте их на стенное зеркало так, чтобы получилось слово «bum». Выключите в комнате свет и направьте на буквы луч электрического фонарика. На противоположной стене появятся теневые изображения букв.

Упражнение 5. Если вы обернетесь и прочтете буквы на стене, что получится: «bum» или «mud»? Теперь если вы посмотрите в зеркало и прочтете отражение теневой надписи на стене, что получится: «bum» или «mud»? Попробуйте ответить на оба вопроса до того, как проведете такой эксперимент.

Билатеральную симметрию человеческого лица можно продемонстрировать вертикально, прижав зеркальце (без рамки) к середине фотографии, снятой в анфас. При этом, конечно, край зеркальца должен проходить по оси симметрии снимка лица. Видимая часть фотографии вместе с отражением выглядит, как лицо на снимке, но не в точности из-за легкой асимметрии черт.

Попробуйте это проделать с собственной фотографией или со снимками друзей, родственников и известных вам личностей в журналах. Иногда очень любопытно видеть, насколько разные получаются лица из двух левых и двух правых половинок. В начале нашего века группа немецких психологов утверждала даже, что два «составных лица», полученных таким образом, отражают две основные стороны в характере изображенного на фотографии человека. Ни один уважающий себя психолог в наше время не принимает эту гипотезу всерьез, но это не помешает вам позабавиться, подвергнув такому «зеркальному анализу» своих приятелей. Слегка отклонив зеркало от вертикали, можно сделать уродливым самое симпатичное лицо.

В вестибюлях гостиниц или учреждений часто встречаются колонны квадратного сечения, выложенные со всех сторон зеркалами. Билатеральная симметрия человеческого тела позволяет проделать забавный фокус, используя такую зеркальную колонну. Встаньте за ней, прижавшись носом к ребру колонны так, чтобы на виду оставалась ровно половина тела. Видимая часть вместе с отражением будет выглядеть как целый человек. (Подвигайтесь немножко из стороны в сторону, пока зрители не скажут вам, что вы выглядите совершенно нормально.) Поднимите ту руку, которая отражается в зеркале и подуйте на палец. Одновременно рукой, которая не видна зрителю, поднимите свою шляпу (следя за тем, чтобы она все время двигалась в горизонтальной плоскости). Это создаст иллюзию, что ваша шляпа взлетела в воздух. Отнимите палец ото рта и медленно опустите шляпу на голову. Многих людей этот простой трюк озадачивает.

Если вас вызовут на бис, то поднимите ногу, видимую зрителям. «Составной образ» подпрыгнет, дрыгая обеими ногами, как паяц на веревочке. При этом быстро вращайте глазами. Публике покажется, что один глаз у вас вращается по часовой стрелке, а другой против.

Если прижать край зеркала к любой фигуре или к любому узору, полученная составная картина будет обладать билатеральной симметрией. В детстве, наверное, вы забавлялись картинками из чернильных клякс. Капните несколько раз чернилами на листок бумаги, согните его так, чтобы сгиб попадал на кляксу и сожмите половинки. Развернув листок, вы увидите симметричный узор. В известном тесте Роршаха, используемого психиатрами в диагностике, рассматриваются картинки-кляксы, полученные именно таким образом. Линия сгиба листка является, конечно, осью симметрии полученного узора.

Если поставить два зеркала под углом и приложить их к фигуре или рисунку, получится целый ряд последовательных отражений. При подборе различных углов раствора, равных 180°, деленным на целое число, мы получим отражения, образующие необычные узоры с четным числом осей симметрии. Если угол равен 180°/2 = 90°, таких осей будет четыре. Этого еще мало, и картинки получаются неинтересные. Угол 180°/3 = 60° дает поразительно симметричную гексагональную картинку вроде снежинки с шестикратной осью симметрии. Поставьте три зеркала, раздвинутые под углом 60°, на цветную журнальную иллюстрацию и медленно вращайте их, сохраняя раствор угла постоянным. Абстрактный гексагональный узор будет ритмично меняться, сохраняя все время красивую симметрию. В большинстве калейдоскопов зеркала устанавливают именно под углом 60°, а узоры там возникают за счет отражения фигур, случайно образуемых кусочками цветного стекла.

В США в настоящее время широко распространен новый тип калейдоскопа, так называемый телейдоскоп. Вместо цветных стекляшек на его торцах укреплены увеличивающие линзы, которые превращают этот прибор также и в телескоп. Любой вид, наблюдаемый в телейдоскопе, отражается в зеркалах, установленных под углом 180°/4 = 45°. В этом случае получается октагональный рисунок с осью симметрии восьмого порядка. Любопытный трюк, связанный с проблемой правого и левого, можно показать с помощью двух (или больше) пар обычных игральных костей. Если вы сложите три кубика, как показано на рис. 15, и покроете эту колонку монетой, то, осматривая эту колонку с четырех сторон, можно увидеть четыре грани каждого кубика (две грани невидимы). Можете ли вы правильно назвать показание верхней грани каждой игральной кости, изображенной на рис. 15? Поскольку сумма чисел на всех противоположных гранях равна семи, то легко определить, что для нижнего кубика это 6 или 1, для среднего 4 или 3, а для верхнего 5 или 2. Можете ли вы сказать, какое из чисел каждой пары является правильным ответом на вопрос?

Решение этой задачи основывается на том, что грани игральных костей можно занумеровать только двумя способами при условии, что сумма очков на противоположных гранях равна семи. Оба эти способа являются зеркальным отражением друг друга. Если смотреть на кубик, как показано на рис. 16, со стороны граней 1, 2 и 3 (грань 1 сверху), то видно, что числа в порядке возрастания расположены против часовой стрелки. Все игральные кости в настоящее время изготовляются именно так. В прошлые времена в ходу были оба способа. История кубической кости с постоянной суммой очков на противоположных гранях восходит к древнему Египту, где ее изготовляли и в «правой» и в «левой» модификациях.

Так как вы уже знаете, что все современные игральные кости «левые», то назвать верхние цифры кубиков на рис. 15 не составит труда. Посмотрите на две другие грани и попытайтесь представить, где могут находиться единица, двойка и тройка. Немного попрактиковавшись и помня, что сумма очков на противоположных гранях равна семи, а 1, 2 и 3 идут «против часовой стрелки», вы без особого труда решите задачу.

Упражнение 6. Назовите число очков на верхней грани каждого из кубиков на рис. 15.

Обычно и один человек из тысячи не в состоянии правильно угадать верхние грани, когда кубики сложены таким образом.

Я видел игроков, которые показывали этот фокус в казино. Кто-нибудь в случайном порядке укладывал столбик из шести или более костей, пока игрок отворачивался. Потом, бросив один только взгляд, он называл все верхние цифры, и их проверяли, снимая кубики по одному. Такое искусство всегда производит впечатление и вызывает споры о том, в каком порядке нумеруются грани игральной кости.

Попробуйте эти фокусы на своих друзьях — они достаточно забавны, и математическая «подкладка» делает их интереснее. А нам предстоит заняться более серьезными вещами. В следующей главе мы рассмотрим роль симметрии отражения в живописи и, как это ни удивительно, в музыке и поэзии.

Симметрия отражения — один из древнейших и самых простых способов создавать изображения, радующие глаз. Примером может служить детский чернильный узор, упомянутый в предыдущей главе. Когда ребенку показывают его впервые, он обычно взвизгивает от восторга, увидев развернутый листок с появившимся на нем симметричным узором, особенно если он сделан не темными чернилами, а разноцветными красками. Почему ребенку кажется, что картинка «красивая»? Ответ очевиден — ему нравится порядок и гармония, появившиеся в случайном узоре. Может быть, причина и в том, что в окружающем мире он также видит много билатерально симметричных вещей? Этого, кроме него, никто не знает, но вполне разумно предположить, что именно билатеральная симметрия в природе, которую ребенок видит столь часто, заставляет его с удовольствием реагировать на такие узоры. Билатеральная симметрия широко встречается в произведениях искусства примитивных цивилизаций и в древней живописи. Она занимала существенное место в древнеегипетском искусстве. Средневековые религиозные картины также часто характеризуются отчетливой билатеральной симметрией.

На современный вкус композиция такой картины скучна, поскольку симметрия слишком очевидна (хотя временами она возрождается в некоторых произведениях и в геометрических рисунках абстракционистов). Посмотрите однако, вокруг и вы увидите бесчисленные примеры симметричных форм и узоров в предметах, созданных человеком. Я говорю не о вещах, симметричных по необходимости, для удобства (двери, окна, стулья и т. д.), а о формах и узорах, которые сделаны симметричными просто потому, что так на них приятнее смотреть. Вазы, лампы, подсвечники, витражи, елочные украшения, серьги, брошки — список бесконечен. Узоры на платьях, обоях, занавесках, коврах часто создаются повторением симметричного рисунка. Марки торговых фирм и различные эмблемы обычно билатерально симметричны. Как указывал Герман Вейль в своей небольшой книге «Симметрия» (1952 год), художники часто полностью жертвуют сходством с природой ради получения по обе стороны вертикальной оси совершенно одинаковых изображений. Поразительным примером является двуглавый орел на гербах царской России и старой Австро-Венгерской монархии.

Заметим, что почти в каждом случае ось симметрии на таких изображениях вертикальна. Мы настолько привыкли к вертикальным осям симметрии в природе, что нас охватило бы непонятное нам смущение, если бы, например, оси симметрии на обоях вдруг повернулись на 90°. Есть, однако, один всем нам знакомый вид, у которого ось симметрии горизонтальна: это деревья и другие растения и предметы, отраженные гладью озера или реки. Когда мы видим такой вид на картине, никакого чувства неловкости она у нас не вызывает: симметрия приятна. Поэтому брошки редко имеют только горизонтальную ось симметрии (если, конечно, они не изображают растения или животных, обладающих такой осью).

Явное предпочтение, которое природа отдает вертикальным осям, объясняется очень просто — сила тяжести направлена сверху вниз. Вследствие этого все в природе стремится равномерно развиться или распространиться в горизонтальной плоскости. Вода разливается во все стороны и образует озера с горизонтальной поверхностью. Озеру все равно, куда разливаться — на восток или на запад, на юг или на север, но оно не может разлиться вверх! Поэтому, если вы сфотографируете озеро и, прежде чем печатать снимок, перевернете негатив, превратив тем самым правое в левое и наоборот, на снимке получится все-таки совершенно обычное озеро. Но, перевернув фотографию вверх ногами, вы заставите воду нарушать закон всемирного тяготения и увидите то, чего в природе никогда не бывает.

Назад Дальше