Другая разновидность кубической решетки, показанная на рис. 23 «объемноцентрированная» (обратите внимание на «атом» в центре куба). Таков кристалл металлического натрия. Решетка в данном случае образуется из атомов натрия.
Хлорид натрия, или обычная поваренная соль, также имеет кубическую решетку (рис. 24), но атомы, образующие ее, ионизованы. У натрия на внешней оболочке только один электрон. У хлора на внешней оболочке семь электронов, но там можно разместить и восемь. На этой оболочке есть, так сказать, пустое место, куда можно поместить еще один электрон. Когда два атома встречаются, одинокий электрон натрия заполняет пустое место в оболочке хлора, образуя прочную, устойчивую молекулу поваренной соли. Поскольку каждый атом в такой решетке или лишен одного своего электрона, или имеет один лишний, то и несет соответственно положительный или отрицательный электрический заряд. Как упоминалось выше, такие атомы называются ионами. Из них и состоит кристаллическая решетка.
Строение кристаллической решетки оказывает сильное влияние на видимую форму кристаллических тел. Поваренная соль, например, легко раскалывается вдоль плоскостей решетки. Если вы внимательно посмотрите на кристаллы поваренной соли через увеличительное стекло (или, еще лучше, через микроскоп), то заметите, что крупинки соли имеют в действительности форму крошечных кубиков. Вы, конечно, увидите не элементарную кристаллическую решетку, изображенную на рисунке, — для этого не хватит увеличения лучших микроскопов — а всего лишь маленькие соляные кристаллики, которые принимают кубическую форму потому, что такова форма решетки поваренной соли.
Но не следует думать, что раз структуру решетки нельзя разглядеть в микроскоп, то она не более чем теоретическое построение, и увидеть ее в натуре никак нельзя. Когда-то это было так, но сейчас изобретено много способов «видеть» вещи, слишком маленькие для созерцания невооруженным глазом. Еще в 1912 году немецкий физик Макс фон Лауэ разработал метод наблюдения кристаллической структуры с помощью рентгеновских лучей. В последнее время стали доступны для наблюдения более мелкие детали, для чего через кристалл пропускают электроны, нейтроны и даже ионы. На обложке июньского номера «Сайентифик Америкен» за 1957 год помещена поразительная цветная фотография, показывающая расположение отдельных атомов в кристаллической решетке вольфрама. Фотография была получена с помощью нового прибора, называемого «ионным микроскопом», который дает изображение решетки, увеличенное в два миллиона раз! Так что, как видите, кристаллическая решетка — не выдумка математиков. Теперь она доступна довольно простым способам наблюдения.
Все три описанные кристаллические решетки симметричны в том смысле, в каком мы до сих пор использовали это слово, то есть они совместимы со своими зеркальными отражениями. Кроме того, эти решетки обладают и многими другими типами симметрии, изучением которых занимаются кристаллографы, например разными видами осевой симметрии. Это означает, что если вращать решетку определенным образом вокруг некоторой оси, то после поворота она примет точно такой же вид, как имела до него. Если, например, ось проходит через куб, как показано на рис. 25, вы можете, поворачивая, перевести его в четыре различных положения, которые по всем своим свойствам абсолютно одинаковы. Такая ось называется осью симметрии четвертого порядка. Легко видеть, что у куба четыре таких оси. Если ось проходит через куб, как показано на рис. 26, то поворотами вокруг такой оси его можно поместить в одно из двух одинаковых положений. Такая ось называется осью симметрии второго порядка. Таких осей у куба шесть.
Кристаллы могут обладать осями симметрии второго, третьего, четвертого и шестого порядков. Симметрию пятого порядка кристаллическая решетка иметь не может. Вы можете выложить паркет из треугольников, квадратов и шестиугольников, но не из пятиугольников. По той же причине пятиугольные («пентагональные»), формы никогда не встречаются у трехмерных кристаллов. В живой природе они встречаются часто. Большинство цветов (например, примула) и некоторые животные (например, морская звезда) обнаруживают пентагональную симметрию, но пентагональных кристаллов нет. Согласно строгим законам геометрии, структура кристаллической решетки не может иметь осей симметрии пятого порядка.
Как мы уже видели, у куба есть оси второго и четвертого порядков. А есть ли у него ось третьего порядка? Большинство людей поражается, когда им говорят, что у куба есть и такие оси — целых четыре штуки.
Упражнение 8. Найдите у куба четыре оси симметрии третьего порядка. Иными словами, найдите четыре такие оси, чтобы, вращая куб вокруг любой из них, можно последовательно добиться только трех (ни больше, ни меньше) абсолютно одинаковых положений.
Все эти примеры осевой симметрии можно назвать выполнимыми операциями по той простой причине, что они могут быть произведены в действительности. Тогда симметрию отражения следует называть невыполнимой операцией, потому что нет способа осуществить ее над каким-нибудь реальным твердым телом. Как мы уже знаем, двумерный плоский объект можно отразить, если взять его и перевернуть, но для этого мы должны оперировать с двумерным объектом в 3-пространстве. Точно так же мы смогли бы выполнить отражение над трехмерным твердым телом, если бы знали способ перевести его в пространство высшей размерности. Поскольку такого способа у нас нет, кристаллографы и называют такую операцию невыполнимой. Есть и другие типы невыполнимых операций симметрии, но мы и так уже уделили им больше внимания, чем следует. Симметрия кристаллов — сложная и увлекательная тема, на которую написано огромное количество книг; мы должны устоять перед искушением и не вдаваться в детали. Эта книга — о симметрии вообще. Мы занимаемся кристаллами лишь потому, что нас интересует симметрия отражения, и хотим знать, есть ли у кристаллов плоскость симметрии, совместимы ли они со своими зеркальными отражениями.
Многие минералы находят в виде бесформенных глыб, внешний вид которых не дает никаких или почти никаких указаний об их кристаллическом строении. Счастливым исключением является алмаз — форма кристаллического углерода. Его обычно находят в виде отдельных кристаллов, иногда поразительно правильной формы. Благодаря решетке кубической формы алмаз имеет несколько кристаллических разновидностей. Наиболее часто встречается форма, показанная на рис. 27 слева и известная в геометрии под названием октаэдр (восьмигранник). Обратите внимание на то, что все грани являются равносторонними треугольниками. Фигуры, ограниченные подобно этой плоскими гранями, называются многогранниками. Если многогранник можно положить на стол любой из его плоских сторон, он называется выпуклым. Если все ребра многогранника имеют одинаковую длину, а углы всех граней — одинаковую величину, он называется правильным многогранником.
Имеется только пять правильных выпуклых многогранников: тетраэдр, гексаэдр (куб), октаэдр, додекаэдр и икосаэдр. Иногда их называют «телами Платона», потому что Платон написал о них много интересного. В природе их находят в довольно необычных местах; недавно обнаружили, что некоторые вирусы имеют форму тетраэдров, додекаэдров и икосаэдров!
Ромбический додекаэдр (см. рис. 27, в центре) и гексагональный октаэдр (см. рис. 27, справа) —две другие поразительно красивые кристаллические формы, которые иногда имеет алмаз. Все три перечисленные кристаллические формы симметричны; каждая обладает многими плоскостями и осями симметрии, расположение которых определяется свойствами основной кристаллической решетки. Углерод приобретает кристаллическое строение алмаза, если его подвергнуть высокому давлению. Атомы в его решетке упакованы настолько плотно, что сблизить их еще больше почти невозможно; именно поэтому алмаз — самое твердое из веществ, известных в природе. Углерод может иметь кристаллическую решетку и другой формы, где атомы расположены менее тесно, — это графит, используемый в обычных карандашах, а когда кристаллическая структура разрушается полностью, получается древесный уголь или сажа. Вся разница между сажей, покрывающей печные стенки, и бриллиантом, сверкающим на женском пальце, заключается в различном порядке расположения углеродных атомов!
Очень распространенной кристаллической формой, почти такой же, как кубическая, является ромбоэдр, показанный на рис. 28. Все шесть граней у него в точности одинаковы, это ромбы, и все ребра имеют одинаковую длину. Это как будто куб, сжатый с двух противоположных углов. Такую форму имеют часто встречающиеся кристаллы минерала кальцита (углекислый кальций), а также азотнокислого натрия. Достаточно ли ясно вы представляете себе их форму, чтобы решить, симметрична она или нет?
Упражнение 9. Не прибегая к изготовлению картонной модели, можете ли вы обнаружить у ромбоэдра одну или несколько плоскостей симметрии? Конечно, если вы найдете даже единственную плоскость симметрии, тело будет симметричным и его можно совместить с отражением в зеркале.
Решетка некоторых известных в природе кристаллов обладает зеркальной симметрией, а решетка других кристаллов — нет. Кварц — наиболее распространенный минерал — имеет несимметричную решетку, которую нельзя совместить с зеркальным отражением. Химическое соединение, из которого состоит кварц, называется окисью кремния. Решетка его имеет спиральное строение и состоит из атомов кремния и вдвое большего числа атомов кислорода. Поскольку спираль эта может закручиваться вправо или влево, кварц встречается в двух энантиоморфных разновидностях. В природе кристаллы кварца принимают самые разнообразные формы, на которых, правда, асимметрия решетки отражается редко, но иногда встречаются и асимметричные кристаллы кварца (на рис. 29 показаны обе возможные формы: одна — зеркальное изображение другой).
При распространении луча света колебания происходят обычно во всевозможных плоскостях, проходящих через ось этого луча. Но есть кристаллы, у которых решетка ограничивает световые колебания в одной определенной плоскости; пример тому исландский шпат — прозрачная разновидность минерала кальцита. Световая волна, в которой колебания происходят в определенной плоскости, называется поляризованной. Когда поляризованный свет проходит через прозрачный кварц, асимметрия кристаллической решетки кварца вынуждает плоскость поляризации быстро вращаться по часовой стрелке или против. Отсюда вытекает простой метод обнаружения право-левой асимметрии кристаллической решетки. Киноварь (сульфид ртути) — рыжеватого цвета руда, служащая главным источником добычи ртути, — вращает плоскость поляризации света значительно сильнее, чем кварц. Ее асимметричная кристаллическая решетка состоит из спиральных цепей, образованных перемежающимися атомами серы и ртути. Эти цепи могут закручиваться вправо или влево, как показано на рис. 30. Мы спускаемся на третью ступеньку нашей лестницы и переходим к молекуле. Возникает вопрос: являются ли сами молекулы, рассматриваемые отдельно, вне любой кристаллической решетки, симметричными образованиями? Если да, то, где бы ни получалось химическое соединение — в природе или в лаборатории, — молекулы этого соединения при всех обстоятельствах будут одинаковыми и с одними и теми же свойствами. Но если некоторые молекулы представляют собой асимметричную конструкцию из атомов, то, может быть, можно найти или создать в лаборатории две совершенно различные формы одного и того же соединения. Одна форма будет содержать только «правые» молекулы, другая—только «левые». Два вещества будут одинаковыми во всех отношениях, кроме одного — их молекулы будут зеркальным отражением друг друга.
Такие молекулы существуют. Они называются стереоизомерами, и о драматической истории их открытия мы расскажем в следующей главе.
История открытия «правых» и «левых» молекул берет свое начало во Франции. В первой половине XIX столетия Жан Батист Био, всемирно известный французский физик и химик, обнаружил, что кристаллы кварца обладают способностью вращать плоскость поляризации света. Вещества, обладающие такой способностью, называются оптически активными. Как мы узнали из предыдущей главы, большие кристаллы кварца встречаются иногда в природе в асимметричной форме. Био легко удалось выяснить, что если такой кристалл вращает плоскость поляризации по часовой стрелке, то его зеркальный двойник вращает ее против часовой стрелки. Кроме того, он обнаружил, что если растворить кристалл кварца в жидкости, то раствор не вращает плоскость поляризации. Молекула оказывается оптически не активной. Как это объяснить? Очень просто. Вращающая способность кварца должна определяться не асимметрией внутреннего строения молекул, а тем, что асимметричными являются более крупные конструкции, образуемые молекулами кварца в процессе его кристаллизации. Такой конструкцией является, конечно, асимметричная решетка кварцевого кристалла.
Био сделал и другое открытие, которое было уже не так легко понять. Он обнаружил, что растворы некоторых органических соединений вроде сахара и винной кислоты, которые являются продуктами живой природы, также являются оптически активными! Почему восклицательный знак? Непосвященному может показаться, что в этом нет ничего удивительного, но дело в том, что в таких растворах нет кристаллической решетки, которая вращала бы плоскость поляризации света. Следовательно, вращение это должно обусловливаться каким-то типом асимметрии в строении каждой отдельной молекулы. У Био не было способа доказать это предположение, вернее предчувствие, но оно казалось вполне разумным.
Работы Био по оптической активности органических веществ и сделанные им предположения вдохновили французского химика Луи Пастера. Много лет спустя он прославился на весь мир своими работами по медицине, но в то время это был молодой человек двадцати с небольшим лет, находившийся в самом начале своей карьеры.
Пастер знал, что винная кислота, получаемая из винограда и некоторых других фруктов, всегда вращает плоскость поляризации в определенном направлении. Он также знал, что существует другая разновидность оптически неактивной винной кислоты, называемой рацемической кислотой. Химики выяснили, что эти два вещества абсолютно идентичны по всем своим химическим свойствам, за исключением одного — способности вращать плоскость поляризации света. Винная кислота вращает плоскость поляризации, а рацемическая — нет. Как могут два вещества быть одинаковы во всем, а свет пропускать по-разному? Пастер руководствовался лишь одним соображением: Био прав, предполагая, что разница между левым и правым зависит от структуры самих молекул.
Исходя из этого предположения, Пастер начал интенсивное исследование кристаллических форм винной и рацемической кислот. Он обнаружил, что кристаллы винной кислоты, если внимательно рассмотреть их под микроскопом, оказываются асимметричными; больше того, все они асимметричны в одном и том же смысле, «знак асимметрии» у всех кристалликов одинаков. А кристаллы рацемической кислоты оказались смесью правой и левой форм в равной пропорции! Половина кристаллов идентична с кристаллами винной кислоты, а вторая половина — их энантиоморфы (рис. 31)!
Нетрудно догадаться, что Пастер сделал дальше. С огромной осторожностью и терпением, используя тончайшие инструменты, он отделил видимые только в микроскоп «правые» кристаллы от «левых». Приготовив раствор из кристаллов одного типа, он нашел, что этот раствор во всех отношениях совпадает с винной кислотой, добываемой из винограда. Он вращал плоскость поляризации света в том же направлении, что и натуральная винная кислота. Приготовив раствор из кристаллов другого типа, он снова получил оптически активную винную, кислоту, но с одной существенной разницей. Она вращала плоскость поляризации в противоположном направлении.
«Пастером овладело такое возбуждение, — пишет Рене Дюбо в своей книге „Пастер и современная наука“,— что он выскочил из лаборатории и, наткнувшись в коридоре на одного из ассистентов-химиков, заключил его в объятия, воскликнув: „Я только что сделал великое открытие... Я так счастлив, что меня бросает в дрожь, я больше не могу спокойно смотреть на поляриметр!“». Как подчеркивает Дюбо, чтобы оценить величие открытия Пастера, мы должны помнить, что лаборатория у него была маленькая и примитивная и проработал он в ней всего два года. Он сам должен был приготовлять все химикалии и мастерить оборудование. «Никакой помощи он не получал, — пишет Дюбо, — только моральную поддержку учителей и товарищей по учебе и веру в свое призвание».
Открытие Пастера подтвердило предположение Био об асимметрии некоторых молекул. Когда старый ученый услышал об открытии молодого человека, он немедленно послал за Пастером и попросил повторить при нем эксперимент, выполненный Пастером с винной и рацемической кислотами. Чтобы убедиться в отсутствии ошибки, Био настоял на использовании рацемической кислоты, изготовленной им самим. После выпаривания раствора и образования кристаллов он через плечо Пастера наблюдал, как молодой химик разделяет крошечные кристаллы — правые от левых. Био сам приготовил оба раствора и лично с помощью поляриметра проверил, как они вращают плоскость поляризации. «Сперва он выбрал более интересный раствор, — писал позднее Пастер, — раствор, содержавший новую, ранее неизвестную форму винной кислоты».
«Еще не сняв показания прибора, — писал Пастер (я цитирую по книге Дюбо), — Био понял, что происходит сильное вращение влево. Тогда прославленный старик, растроганный до глубины души, схватил меня за руку и сказал: „Сынок, я так глубоко люблю науку, что сердце мое замирает“».
Это был первый великий эксперимент Пастера, эксперимент, доказавший с полной определенностью, что молекулы могут существовать в двух энантиоморфных, зеркальных формах.
Второе крупное открытие Пастера в этой области было сделано десятью годами позднее — он обнаружил, что при выращивании некоторых видов плесени в растворе рацемической кислоты раствор становился оптически активным. Серией экспериментов он установил, что плесень разрушала только молекулы кислоты одного типа, а их зеркальных напарников не трогала. Очевидно, какая-то асимметрия, присутствующая в органических веществах плесени, приводила к тому, что плесень действовала на молекулы винной кислоты лишь одного из двух возможных типов. В первых экспериментах Пастер сам разделял молекулы двух типов; теперь появился новый метод разделения.
«Асимметричный живой организм, — писал Пастер, — выбирает для питания именно ту форму винной кислоты, которая отвечает его требованиям и, несомненно, соответствует какой-то собственной внутренней асимметрии, а другую форму оставляет без изменения — либо полностью, либо большую ее часть. Асимметричный микроорганизм, следовательно, демонстрирует свойство, которым не обладает ни одно химическое вещество типа обычных окислителей. Только асимметричные агенты могут оказывать избирательное действие по отношению к энантиоморфам».
Как утверждает Дюбо, Пастер пытался глубже разобраться в смысле своих опытов. Зная, что большинство органических веществ, входящих в состав живых организмов, оптически активны, а растворы любых химических веществ неживой природы, наоборот, оптически неактивны, он решил, что только живые организмы могут создавать соединения из асимметричных молекул одного типа. При получении таких соединений Пастер использовал два метода, в которых участвовал «живой агент»: в одном это была плесень, в другом — сам Пастер: ведь это он разделял молекулы, сортируя образованные ими кристаллы.
Пастер был убежден (и оказался прав), что только в живых организмах можно обнаружить асимметричные вещества, состоящие из асимметричных молекул одного типа. Это была, по его мнению, единственная «четко установленная демаркационная линия, которую можно в настоящее время провести между химией живой материи и химией неживого».
«Неживые симметричные силы, — писал Пастер, — действующие на симметричные атомы и молекулы, не могут привести к появлению асимметрии, поскольку одновременное создание двух асимметричных половинок эквивалентно образованию симметричного целого независимо от того, будут ли асимметричные половинки объединяться в одну молекулу... или существовать в виде разных молекул подобно левой и правой компонентам рацемической кислоты. В любом случае симметрия „целого“ подтверждается отсутствием у него оптической активности».
В трогательном письме к другу в 1851 году Пастер писал (цитирую снова по книге Дюбо): «Я на пороге тайны, и покров, ее скрывающий, становится все тоньше и тоньше. Ночь кажется мне слишком долгой». Последней фразой Пастер хотел сказать, что он с трудом мирится с ночными перерывами в работе, так не терпится ему снова очутиться в своей лаборатории!
Пастер никак не мог установить точную геометрическую природу асимметрии, из-за которой молекулы отличались от своих зеркальных изображений, но в том, что такая асимметрия существует, он не сомневался. «Молекулярные структуры двух винных кислот асимметричны, — писал он, — а в остальном они совершенно одинаковы, только обладают асимметрией разного знака. Группируются ли атомы правой кислоты в виде правой спирали, помещаются ли в вершинах неправильного тетраэдра или образуют асимметричную конструкцию другого типа? Мы не можем ответить на эти вопросы. Но нет никакого сомнения в том, что какой-то асимметричный порядок расположения атомов, несовместимый со своим зеркальным изображением, существует. Не менее достоверно то, что атомы левой кислоты располагаются в противоположном асимметричном порядке».
Истинная природа молекулярной асимметрии была выяснена лишь в 1874 году (Био к тому времени уже не было в живых, а Пастеру исполнилось 52 года). Как часто случается в науке, правильное объяснение было выдвинуто одновременно и независимо двумя людьми: французом Жозефом Ле Белем и голландцем Якобом Гендриком Вант Гоффом. Оба молодых ученых предположили, что атом углерода в различных соединениях углерода помещается в центре тетраэдральной структуры и соединяется химическими связями с четырьмя другими атомами, помещенными по вершинам тетраэдра. Атом углерода имеет всего четыре электрона во внешней оболочке, хотя там достаточно места для восьми. Поэтому у него есть, так сказать, четыре пустых места, которые могут быть заполнены электронами с внешних оболочек четырех других атомов. Если все четыре внешних атома разные, рассуждали Ле Бель и Вант Гофф, то такая тетраэдральная структура будет асимметрична и несовместима со своим зеркальным изображением.
Айзек Азимов в главе об углероде в своей книге «Что должен знать о науке интеллигентный человек» предлагает простой способ изготовить модель тетраэдрального углеродного соединения. Пусть пробка в центре изображает атом углерода. К ней четырьмя зубочистками можно так прикрепить черные маслины, чтобы образовался тетраэдр (рис. 32). Маслины представляют четыре остальных атома одного и того же элемента. Если, например, каждую маслину считать за атом водорода, то получится модель молекулы метана СН4, то есть болотного газа. Это означает, что молекула метана состоит из четырех атомов водорода, химически связанных с одним атомом углерода. Вспомним, что у атома углерода на внешней оболочке есть место для четырех электронов. Каждый атом водорода имеет по одному электрону, так что вчетвером им легко соединиться с углеродом. Если водород соединяется с углеродом, получающиеся соединения называются углеводородами. Молекула метана — простейшая из всех углеводных молекул; это практически простейшая органическая молекула. Во времена Пастера ее изображали (и сейчас изображают) с помощью схематического рисунка, на котором химические связи символизируются черточками, соединяющими четыре буквы Н (водород) с буквой С (углерод). Чертежик этот, конечно, заключен в плоскости.
Когда Ле Бель и Вант Гофф попробовали представить себе, как выглядит эта конфигурация в 3-пространстве и какую структуру она должна иметь при этом, на ум им сразу же пришел тетраэдр — простейшее из пяти Платоновых тел, описанных в предыдущей главе, поскольку в нем все водородные атомы будут располагаться на равных расстояних от центрального атома углерода. Ясно, что такая молекула симметрична. У нее даже много плоскостей симметрии. Ее можно совместить с отражением в зеркале.
Предположим теперь, что мы заменили одну черную маслину зеленой. Симметрична ли модель теперь? Да, у нее три плоскости симметрии, и все они проходят через зеленую маслину. Одна такая плоскость показана на рис. 33. Такая модель все еще может быть совмещена со своим зеркальным изображением. Подобную конфигурацию имеет метанол, или древесный спирт. Формулу СН3ОН этого простейшего спирта схематически представляют следующим образом:
Уберем еще одну черную маслину и заменим ее вишней. С первого взгляда может показаться, что симметрия модели нарушена, но, посмотрев внимательнее, вы убедитесь, что модель все еще симметрична.
Упражнение 10. Проведите плоскость симметрии через модель, изображенную на рис. 34.
Молекула этилового, или винного, спирта (С2Н5ОН) имеет подобное строение. На приведенной ниже схеме молекулы этилового спирта атом углерода связан с двумя атомами водорода, которые, конечно, однородны; две другие связи соединяют разнородные группы атомов.
Если по крайней мере две группы атомов, связанные с центральным атомом углерода, одинаковы, то молекула симметрична. Но если вы удалите еще одну черную маслину и замените ее белой черешней, симметрия, наконец, нарушится (рис. 35). Теперь у модели нет плоскости симметрии. Как бы ни вращали вы эту модель в 3-пространстве, совместить ее с зеркальным изображением не удастся.
Молекулой такого типа обладает амиловый спирт, вот ее структурное изображение:
Как видите, все группы, с которыми соединяется центральный атом, разные. Когда это случается, атом углерода называют асимметричным атомом С. Конечно, сам по себе атом углерода не асимметричен; асимметричен он только в том смысле, что связан с четырьмя другими атомами или группами атомов таким образом, что возникает асимметричная в 3-пространстве конструкция. Любая молекула, содержащая один или несколько асимметричных атомов углерода, является обычно асимметричной. Исключением служат случаи, когда взаимно зеркально асимметричные атомы уравновешивают друг друга, так же как наши уши уравновешивают друг друга. Примером служит четвертая разновидность винной кислоты, так называемая мезовинная кислота.