Особенно удобным оказалось использование «РВМ–1» в задачах экономического характера, где требовалась обработка очень больших массивов информации, вводившихся с перфокарт, со сравнительно небольшим числом однообразных операций над каждым отдельным числом. Благодаря этому именно на «РВМ–1» выполнялись в 1961–1962 годах расчеты цен после денежной реформы.
Дальнейшие работы Н. И. Бессонова были направлены на использование изобретенных им усовершенствований в электронных вычислительных машинах. И здесь он достиг существенных результатов. К сожалению, преждевременная смерть в 1963 году помешала ему полностью осуществить задуманное.
...Релейные вычислительные машины просуществовали довольно недолго, поскольку имели невысокую скорость выполнения арифметических операций и малую надежность. Это объяснялось прежде всего ненадежностью самих электромеханических реле – основных счетных и запоминающих элементов машины – их контакты то и дело искрили, подгорали, их приходилось постоянно чистить... Кроме того, во многом эти машины повторяли аналитическую машину Бэббиджа – этого в XX веке оказалось уже недостаточно.
Тем не менее именно они были первыми действовавшими универсальными вычислительными машинами.
В 1906 году американскому изобретателю Ли де Форресту был выдан патент на устройство, ставшее впоследствии основой электроники. Он изобрел электронную лампу–триод. А к концу 20–х годов XX века другой американец, профессор Массачусетского технологического института Ванневар Буш создал аналоговый сетевой анализатор – прибор, который позволял моделировать процессы, происходящие в сложных электрических сетях.
Эти два изобретения и послужили основой для создания нового класса конструкций – электронных вычислительных машин (ЭВМ). Впрочем, не только они...
В 1936 году английский математик Алан Тьюринг опубликовал статью, в которой доказывал принципиальную возможность создания универсального цифрового вычислительного устройства, способного решать задачи любой степени сложности.
Такое устройство тут же окрестили «машиной Тьюринга» и стали обсуждать, где ее можно использовать с наибольшей пользой. Кроме того, многих ученых и даже писателей–фантастов заинтересовал вопрос, до каких пределов может быть усовершенствовано такое устройство. Масла в огонь споров добавил и сам Тьюринг. Свою очередную статью он озаглавил: «Может ли машина мыслить?» А из самого текста можно было понять, что сам автор предполагает положительный ответ на свой вопрос.
Впрочем, пока теоретики и праздная публика спорили, практики потихоньку делали свое дело. Тот же Тьюринг в 1941 году был включен в секретную группу, которая в одной из лабораторий Манчестерского университета в Англии сконструировала вычислительную машину Colossus для решения очень важной задачи. С ее помощью удалось найти ключ к расшифровке секретных кодов немецких спецслужб. Кстати, сами немцы кодировали свои сообщения для передачи по радио с помощью машины Enigma и долгое время были уверены в невозможности расшифровать этот код...
Примерно в то же время еще один англичанин, которого звали Норберт Винер, участвовал в разработке быстродействующего артиллерийского вычислителя, который должен был обеспечить зенитные орудия данными для стрельбы по самолетам.
Когда же война закончилась, Винер выпустил в свет книгу «Кибернетика, или Управление и связь в животном и машине», в которой были сформулированы основные положения новой науки об универсальных законах управления. Название ее ученый вывел из греческого слова «кибернетос» – так древние греки называли лоцмана, навигатора, впередсмотрящего.
Так что, как видите, в 40–е годы XX века и теоретики и практики были уже готовы к появлению новых, еще более совершенных вычислительных машин. И в середине 1943 года началась работа над созданием первой электронной вычислительной машины. Руководили этой работой американские ученые Моучли и Эккерт, уже упоминавшиеся в нашей книге.
Джон Моучли после окончания университета и защиты докторской диссертации по физике в начале 30–х годов занимался вопросами статистического анализа геофизических данных. Сталкиваясь в процессе работы с необходимостью большого количества вычислений, Моучли пришел к мысли о необходимости создания быстродействующего и надежного вычислительного устройства.
Причем в отличие от других конструкторов он полагал, что лучшим элементом для счета и запоминания будут электронные лампы. В отличие от обычной электролампочки, где ток просто раскаляет спираль, в электронных лампах он выполняет другие функции.
Например, в лампах–диодах невидимый поток электронов просто перетекает с раскаленного электрода–катода на электрод–анод в одном лишь направлении. Обратно по законам физики он уже проследовать не может. Это свойство диодов используется, например, для преобразования переменного тока в постоянный.
В лампах–триодах на пути следования потока электронов от катода к аноду стоит еще дополнительный электрод–сетка. Подавая на него электрическое напряжение определенной величины.и знака, можно регулировать величину потока электронов – увеличивать или ослаблять его. Обычно такие лампы используют в качестве усилителей. Слабый сигнал, подаваемый на сетку, управляет куда более сильным потоком электронов на выходе с анода.
Хотя сам эффект прохождения электрического тока через вакуум от катода к аноду был открыт Томасом Эдисоном еще в 1883 году, первая электронная лампа – вакуумный диод – была построена Флеммингом лишь в 1904 году. Вскоре Ли де Форрест, как уже говорилось, изобрел вакуумный триод – лампу с тремя электродами, затем появилась газонаполненная электронная лампа – тиратрон, вслед за ней пятиэлектродная вакуумная лампа – пентод и т. д.
До 30–х годов XX века электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни Вильямс построил для нужд экспериментальной физики тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп.
Электронный счетчик состоит из ряда триггеров. Триггер же, изобретенный в 1918. году М. А. Бонч–Бруевичем и – год спустя независимо от него – американцами У. Икклзом и Ф. Джорданом, содержит две лампы, соединенные между собой таким образом, что в каждый момент ток проходит лишь через одну из них. То есть, говоря проще, триггер представляет собой электронный аналог механического реле. А стало быть, может быть использован подобно тому, как работали реле в релейных машинах.
В середине 30–х годов Моучли удалось построить несколько удачных моделей простых электронных счетчиков на газонаполненных лампах. Подобные же устройства создали Кроуфорд в США, Ямашита в Японии, Шрейдер в Германии. Все это говорило о целесообразности разработки «электронного вычислителя».
В 1941 году доктор Моучли переходит на преподавательскую работу в Пенсильванский университет, где уже был накоплен опыт использования электронных ламп в вычислительных машинах. Правда, это были машины другого типа – аналоговые. Так, под руководством известного инженера Ванневара Буша здесь была создана крупнейшая в мире специализированная аналоговая машина для решения дифференциальных уравнений.
Она затем была использована для составления и корректирования таблиц стрельбы и бомбометания. Но во время испытаний ряд специалистов обратил внимание на малую скорость и невысокую надежность устройства. И тогда Моучли предложил заменить его электронной цифровой вычислительной машиной.
Однако докладная записка, поданная Моучли в августе 1942 года своему начальству, осталась без ответа. Лишь через год на нее обратил внимание Герман Гольдстайп, бывший доцент математики Мичиганского университета, а в годы войны – офицер связи. Он попросил обновить и дополнить ее. Что и было сделано по просьбе Моучли его бывшим аспирантом Д. Преспером Эккертом.
В июне 1943 года новый вариант докладной записки Моучли–Эккерта был рассмотрен в Вашингтоне. И вскоре артиллерийское управление США заключило договор с Пенсильванским университетом на постройку «электронной машины для расчета баллистических таблиц». Руководителем работ был назначен Моучли, главным инженером – Эккерт, а техническим куратором от министерства обороны – капитан Герман Гольдстайн.
Команда из 10 инженеров, 200 техников и нескольких тысяч рабочих–монтажников в течение двух с половиной лет трудилась над созданием «Электронного цифрового интегратора и вычислителя» (Electronics Numerical Integrator and Computer, сокращенно «ЭНИАК»).
Это было огромное сооружение, состоящее из 40 панелей, содержащих 18.000 электронных ламп и 1500 реле. Машина потребляла около 150 кВт электроэнергии – мощность, достаточная для работы небольшого завода.
Тем не менее использование электронных ламп вместо механических и электромеханических элементов позволило резко увеличить скорость выполнения машинных операций. «ЭНИАК» тратил на умножение всего 0,0028 секунды, а на сложение и того меньше – 0,0002 секунды. Основными схемами машины были так называемые ячейки «И», действовавшие как переключатели, ячейки «ИЛИ», предназначенные для объединения на одном выходе импульсов, идущих от разных источников, и, наконец, триггеры (так называются устройства, способные по команде занимать одно из двух положений – «О» и «1», «включено» или «выключено».)
В «ЭИИАКе» 10 триггеров соединялись в кольцо, образуя десятичный счетчик, который выполнял роль счетного колеса механической машины. 10 таких колец плюс 2 триггера для представления знака числа образуют запоминающий регистр. Всего в «ЭНИАКе» было 20 таких регистров. Каждый регистр мог быть использован также для выполнения операций суммирования и вычитания. Другие арифметические операции выполнялись в специализированных блоках. Помимо памяти, на триггерных ячейках в машине имелся блок механических переключателей, на котором вручную могло быть установлено до 300 чисел.
Работой отдельных блоков машины управлял задающий генератор, который определял последовательность тактовых или синхронизирующих импульсов, эти импульсы «открывали» и «закрывали» соответствующие электронные блоки машины.
Работа над «ЭНИАКом» проходила в обстановке чрезвычайной секретности. Не удивительно поэтому, что выдающийся американский математик Джон фон Нейман узнал о ней совершенно случайно. Будучи, консультантом крупнейшей в США Абердинской баллистической лаборатории, он летом 1944 года встретил на железнодорожной станции Абердина своего старого знакомого Германа Гольдстайна. В разговоре тот упомянул о работах Моучли–Эккерта. Заинтригованный Нейман захотел присоединиться к ним...
Тут надо, наверное, сказать, что авторитет Джона фон Неймана в среде ученых был очень высок. Кое–кто из посвященных знал, что Нейман частенько бывал в Лос–Аламосе, где создавалась атомная бомба, непосредственно участвовал во многих проектах, много консультировал. Причем его феноменальные математические способности иной раз вызывали шок у окружающих.
«Однажды один известный физик–экспериментатор и я целый день безуспешно ломали голову над задачей, для решения которой нужно было взять некий интеграл, – вспоминал Эмилио Сегре, ученик Энрико Ферми – одного из «отцов» американской ядерной бомбы. – Поставивший нас в тупик интеграл был написан на доске, когда через приоткрытую дверь нашей комнаты мы увидели идущего по коридору фон Неймана. «Не можете ли вы помочь нам с этим интегралом?» – спросили мы у него. Фон Нейман подошел к двери, глянул на доску и продиктовал ответ. Мы совершенно остолбенели, – не понимая, как это ему удалось сделать...»
Естественно, что фон Нейман не только мгновенно смог оценить огромное практическое значение быстродействующих вычислительных машин, но и был способен помочь в их совершенствовании.
Он присоединился к группе Моучли–Эккерта, когда конструирование «ЭНИАКа» подходило к концу. И тут же стал выдвигать идеи, как его можно усовершенствовать.
В конце концов, это привело к тому, что, едва закончив работу над одной машиной, все тут же переключились на создание другой, более совершенной.
Один из наиболее ощутимых недостатков релейных машин и «ЭНИАКа» заключался в способах программного управления ходом вычислений. «ЭНИАК», например, несколько дней готовили к работе, осуществляя необходимые соединения на коммутационной доске, а собственно решение задачи длилось всего несколько минут.
Для устранения этого недостатка фон Нейман и его коллеги предложили «принцип хранимой программы», в соответствии с которым программа, как и исходные числовые данные, вводилась и хранилась в памяти машины.
В 1945 году группа начала работу над «Электронной вычислительной машиной с дискретными переменными», сокращенно «ЭДВАК». Однако вскоре коллектив разделился: фон Нейман и Гольдстайн уехали в Принстон, Беркс – в Мичиган, а Моучли и Эккерт организовали собственную компанию по производству ЭВМ. Поэтому «ЭДВАК» был закончен лишь в 1950 году – на год позже, чем английская машина «ЭДСАК», которая оказалась, таким образом, первой в мире вычислительной машиной с хранимой программой.
Сложение занимало у «ЭДСАКа» 0,07 миллисекунды, умножение – 8,5 миллисекунды (1 миллисекунда = 10~6 секунды), ввод данных в машину производился с помощью перфоленты, вывод – с помощью пищущей машинки.
Вслед за «ЭДСАК» и «ЭДВАК» в первой половине 50–х годов появляется множество других ламповых машин. Например, в США Гарвардская вычислительная лаборатория в марте 1950 года закончила работу над ЭВМ «Марк–3», в которой тоже использовался принцип «хранимой программы».
Новоявленная фирма «Эккерт–Моучли компьютер корпорейшн» начала свою деятельность с создания «БИНАКа». В начале 50–х годов к работам над вычислительными машинами приступило Национальное бюро стандартов США. Результатом этих работ явились машины «ДИСЕАК», а затем «СВАК».
И наконец, английские специалисты при непосредственном участии Тьюринга создали ЭВМ с названием «МАДАМ».
Вскоре слухи о создании вычислительных машин за рубежом проникли и в нашу страну. Однако первое время советское руководство отнеслось к созданию таких машин отрицательно. «Кибернетика – это буржуазная лженаука, а вычислительные машины нам не нужны – у нас достаточно счетоводов и бухгалтеров», – примерно такова была тогдашняя точка зрения.
Впрочем, довольно скоро ее пришлось изменить: применение за рубежом ЭВМ для расчетов самолетов, двигателей, первых ракет привело к тому, что мы стали в этих отраслях отставать. Пришлось пускаться вдогонку.