Система Диофанта - W Cat 10 стр.


— А подробнее.

= Новизна фокуса прошла. Все уже знают секрет. Но мы нашли еще одно применение: проверяем правильность решения КУ, очень удобно.

= Но у меня два вопроса.

— Попробуй.

= 1. как ты узнал сколько получится формул?

— Подобную задачу я решал еще в 9 классе.

В те времена я прочел рассказ Артура Кларка «Девять миллиардов имен Бога.» и меня заинтересовало — вот это ЧИСЛО писатель просто выдумал или все таки вычислил, я решил проверить. Решение искал очень, ОЧЕНЬ долго, смешны теперь две вещи, во-первых решение можно было найти за час-полтора, и второе, совершенно не помню, что у меня получилось, т.к. процесс решения забрал столько сил и вызвал такую гордость.... что в результате получилась подмена целей и конечная ЦИФРА меня уже не столь интересовала. Ну можно назвать и третью причину для смеха, в 10 классе я узнал, что МОИ формулы носят имя очень известного (общеизвестного) ученого.

= Конечно, это очень интересно, но я хотел бы конкретики.

— Хорошо, приступим, данная задача намного проще. Поинтересуйся в тексте программы; сколько вероятных значений может принять второй корень.

= Сейчас сообразим..... 8 значений.

— Ну, а первый корень может принимать одно из пяти значений.

— Значит так, переберем не повторяющиеся комбинации значений корней:

запишем в список 8 вариантов значений x2 при x1 = 1

добавим в список 8 вариантов значений x2 при x1 = 2

добавим 8 вариантов значений x2 при x1 = 3

.............

= Остановись, все предельно понятно 8 * 5 = 40

— Далее. У нас возможны 4 варианта распределения знаков по корням.

= Ясно! 40 * 4 = 160. Но ты сказал что будет меньше.

— Посмотри на 39 строку. Мы исключили из рассмотрения равные корни с разными знаками, т.к. уравнение x2 — 0x — 25 = 0 ну уж слишком очевидно. Если очень хочется узнать, точное число комбинаций, то есть два пути или вычислить сколько будет этих самых, разнополых близнецов или написать программу удаления повторяющихся значений : )

= Но практика показала, что даже 110[для второй версии данного текста я отсортировал список уравнений удалив повторы] слишком мало.

— Как я понял мы подползли ко второму вопросу. Именно для этого я тебе дал текст программы, коею надо изменить.

— Согласен, разбираться в чужой программе тяжело. Но попробуем. Есть два варианта — выбирать тебе.

1 — вернуться к функции gen_number() из первой версии программы.

= Так, 8 * 8 * 4 = 256.

2 - изменить 34 строку программы на x1 = gen_number(4) * gen_number(4)

= Пробуем, 8 * 5 * 5 * 4 = 800. Вот это уже достойно.

— Рад, что тебе понравилось, мне не трудно выложить еще парочку приложений, но решить такие уравнения в уме будет уже труднее (хотя возможно полезнее).

= Спасибо конечно, но, как я уже сказал, новизна прошла...

— Конечно, лежать на диванчике спокойнее.

знают, что все здесь изложенное чепуха, т.к. практической пользы для разумных людей в вышесказанном нет, но может найтись такой чудак, который сделает свои, для нас разумных неожиданные выводы.

Большая часть математики выросла из таких вот глуповатых, детских вопросов.

= Например?

Прочитай, как Джонатан Свифт издевался в «Путешествиях Гулливера» над Раймундом Луллием. И конечно же, этот умнейший человек не мог себе представить, что такая вот смешная «логическая машина Луллия» будет одним из истоков создания математической логики, а из нее вырастут и наши любимые компьютеры.

Ты прочитал книгу про Жар Холодных Чисел?

/ Опять ошибся в названии/

= Ну,.... не дочитал.

— ТШёРТ ПОПеРи!!! Ну как мне заставить тебя учится!

— Давай современнее. Почитай о Великой теореме Ферма. 350 лет сильнейшие математики решали задачу — условие которой записывается в одну строчку, да, задача решена, но главное, попутно открыты новые пути, разработаны новые методики...

Ладно, давай не будем претендовать на великие открытия. Но развить свои способности тебе вполне доступно.

= Предлагаешь в цирке удивлять фокусами?

— Неплохая мысль. Цирк и занимается демонстрацией сверх возможностей человека.

Но фантастическими возможностями вычислений обладали как известные ученые (на ум приходит индийский математик Сриниваса Рамануджан) так и не известные счетоводы ( подпольный Корейко).

А лишних знаний и умений не бывает. Меня всегда возмущает афоризм

Назад Дальше