Например, двухфунтовый объект осуществляет давление на руку в два раза сильнее, чем однофунтовый. Достаточно ли этого, чтобы сказать, что двухфунтовый объект упадет быстрее, чем однофунтовый? Если двухфунтовый объект «показывает» в два раза большее «рвение» возвратиться к своему естественному месту, говорит ли это о том, что он должен падать в два раза быстрее? Почему бы не проверить этот факт? Почему бы не получить точные данные и не сравнить их, чтобы выяснить: действительно ли двухфунтовый объект падает в два раза быстрее однофунтового? Если данные не совпадут, то, конечно, греческую теорию движения следует пересмотреть. Если, с другой стороны, двухфунтовый вес действительно падает в два раза быстрее, то это послужит лишним подтверждением греческой теории движения.
И все же такое преднамеренное испытание (или, как мы его теперь называем, — «эксперимент») не было проведено не только Аристотелем, но и в течение двух тысяч лет после него. Причина этого двойственна. Во-первых, теоретический аспект.
Древние греки достигли самых больших успехов в геометрии, которая имеет дело с абстрактными концепциями типа точек нулевого размера и прямых линий, не имеющих ширины. Они достигли результатов большой простоты и общности, которых они не могли бы получить, измеряя реально существующие объекты. Это привело, в частности, к возникновению мнения, что реальный мир груб, неправильно устроен и что, основываясь на нем, нельзя разрабатывать абстрактные теории Вселенной. Безусловно, были древние греки, которые экспериментировали и получали важные заключения именно в результате этих экспериментов; например, Архимед (ок. 287 — 212 до н.э.) и Герон (начало I века н.э.). Однако и в древние, и в Средние века была более широко принята форма вычитания из нескольких предположений по сравнению с испытанием экспериментированием.
Вторая причина была чисто практическая. Эксперимент не всегда столь же легко поставить, как это можно было бы предположить. Нетрудно проверить скорость падающего тела в наш век секундомеров и электронных методов измерения коротких интервалов времени. Но всего лишь три столетия назад не существовало никаких часов, приспособленных для измерения коротких интервалов времени, и немногие хорошие измерительные приборы любого типа ценились на вес золота.
Положив в основу «чистую» теорию, древние философы действительно сделали то, на что они больше всего были способны, что же касается их кажущегося презрения к экспериментированию — тут типичный случай, когда из вынужденной необходимости делают достоинство.
Ситуация медленно начала изменяться только в конце Средневековья. Все большее число ученых начали оценивать значение экспериментирования как метода испытания теорий и повсеместно начали пробовать разрабатывать методики проведения экспериментов.
Экспериментаторы не имели значительного влияния на науку вплоть до появления на сцене итальянского ученого Галилео Галилея (1564–1642). Он не изобретал экспериментирования, но сделал его показательным, захватывающим и популярным. Его эксперименты с движением были настолько изобретательны и убедительны в доказательстве, что они не только начали разрушение аристотелевской физики, но и продемонстрировали раз и навсегда потребность науки в экспериментаторстве. Именно от Галилео (он больше известен по имени) и начинается отсчет даты рождения «экспериментальной науки», или просто — «современной науки».
Главной трудностью, с которой столкнулся Галилео, была проблема хронометрирования. Он не имел часов, достойных своего названия, так что был вынужден импровизировать. Например, он использовал контейнер с маленьким отверстием в основании, из которого вода капала в кастрюлю с достаточной равномерностью. Узнав вес воды, которая перетекла между двумя событиями, можно узнать затраченное время.
Конечно, данный способ не подходит для измерения времени нахождения тел в «свободном падении», то есть беспрепятственном падении вниз. Свободное падение с любой разумной высоты закончится слишком быстро, и количество воды, собранной за время падения, слишком мало, чтобы сделать даже приблизительно точные замеры времени.
Поэтому Галилео решил использовать наклонную плоскость. Гладкий шар будет катиться вниз по гладкому углублению на такой плоскости с явно более низкой скоростью, чем двигался бы в свободном полете. Кроме того, если уменьшить наклон этой плоскости к горизонтали, то шар будет катиться все менее и менее быстро; при точно горизонтальной плоскости шар не будет катиться вообще (по крайней мере, из состояния покоя). Этим методом можно замедлить скорость падения до уровня, при котором даже грубые устройства измерения времени начинают выдавать достаточно точные результаты.
Можно спросить: а может ли движение вниз по наклонной плоскости дать результаты, которые справедливо применять и для случая свободного падения? Кажется вполне разумным предположить, что может. Если что-то истинно для любого из углов, под которым находится наклонная плоскость, оно должно быть истинно и для свободного падения, поскольку свободное падение можно рассматривать как качение вниз по наклонной плоскости, максимально отклоненной по отношению к горизонтали, то есть под углом 90 градусов.
Например, можно легко видеть, что достаточно тяжелые шары различных весов катятся вниз по одной и той же наклонной плоскости с одной и той же скоростью. Это правило является истинным для любого угла к горизонтали, под которым отклонена наклонная плоскость. Если плоскость отклонить более резко, шары покатятся быстрее, но все они одинаково увеличат скорость своего движения и в конечном итоге покроют одно и то же расстояние за одно и то же время. Справедливо будет заключить, что свободно падающие тела пролетят равные расстояния за равное время независимо от их веса. Другими словами, тяжелое тело не будет падать более быстро, чем легкое тело, что не соответствует точке зрения Аристотеля.
(Существует известная история о том, что Галилео доказал это, бросив два объекта различного веса с наклонной Пизанской башни, и они ударились о землю одновременно. К сожалению, это — только легенда. Историки совершенно уверены, что Галилео никогда не проводил такого эксперимента, но вот голландский ученый Симон Стевин (1548–1620) производил подобные измерения за несколько лет до экспериментов Галилео. В холодном мире науки, однако, осторожные и исчерпывающие эксперименты вроде тех, что проводил Галилео с наклонными плоскостями, иногда значат больше, чем некоторые сенсационные демонстрации.)
Все же можем ли мы действительно так легко расстаться с аристотелевскими представлениями о движении? Нет никаких сомнений в справедливости утверждения того, что скорости движения шаров по наклонной плоскости равны, но, с другой стороны, не менее справедлив и тот факт, что мыльный пузырь падает гораздо медленнее, чем шарик от пинг-понга того же самого размера, и что шарик от пинг-понга падает гораздо более медленно, чем твердый деревянный шар того же самого размера.
Однако этому имеется объяснение. Объекты не падают сквозь ничто, они падают сквозь воздух, и, чтобы падать, они должны, если можно так выразиться, «раздвинуть» воздух. Мы можем принять точку зрения, что процесс «раздвигания» воздуха занимает время. Тяжелое тело осуществляет сильный нажим и легко «раздвигает» воздух, «проталкивая» его мимо себя, и поэтому не теряет фактически никакого времени. Не имеет значения, сколько весит тело: один фунт или сотню фунтов. Однофунтовый вес испытывает такое малое сопротивление воздуха в процессе его «раздвигания», что вес в сотню фунтов едва ли может улучшить этот результат. Поэтому оба веса падают на равные расстояния за равное время. Действительно, легкое тело типа шарика для пинг-понга нажимает на воздух настолько мягко, что из-за этого испытывает значительное сопротивление в «раздвигании» воздуха на своем пути и поэтому падает медленно. По той же причине мыльный пузырь падает вообще еле заметно.
Можно ли использовать это объяснение «воздушного сопротивления» как соответствующее истине? Или это только выдумка, призванная объяснить неудачу обобщения Галилео для реальных условий жизни? К счастью, данный вопрос может быть проверен. Сначала предположите, что у вас есть два объекта равного веса, причем первый — сферический и компактный, а другой — широкий и плоский. Широкий плоский объект вступает в контакт с воздухом по более широкому фронту и, чтобы упасть, должен «раздвинуть» большее количество воздуха на своем пути. Поэтому он будет испытывать большее сопротивление воздуха, чем компактный сферический объект, и будет падать медленнее, несмотря на то что оба объекта имеют равный вес. Проверка показывает, что все верно. Действительно, если лист бумаги смят в шарик, то он падает быстрее, потому что он преодолевает меньшее сопротивление воздуха. Я упомянул этот эксперимент как один из тех, которые древние греки могли бы легко выполнить и благодаря которому они могли бы обнаружить, что что-то неладно с аристотелевским представлением о движении.
Еще более безошибочным тестом было бы избавиться от воздуха и позволить телам падать в вакууме. В среде, где отсутствует сопротивление воздуха, все тела, независимо от того, легкие они или тяжелые, должны падать на равные расстояния за равные промежутки времени. Галилео был убежден, что это так, но в его время проверить это было невозможно, так как не существовало способов создания вакуума. В позднейшие времена, когда вакуум уже научились создавать, эксперимент по совместному падению перышка и свинцовой глыбы, с целью подтверждения факта их одновременного приземления, стал достаточно заурядным. Таким образом, можно сказать, что сопротивление воздуха — вполне реальное явление, а не только средство спасения престижа.
Конечно, это поднимает вопрос, оправданно ли, ради изложения простого правила, описывать Вселенную в нереальных условиях? Правило Галилео о том, что все объекты любого веса падают на равные расстояния в равное время, может быть выражено в очень простой математической форме. Однако правило это истинно только в физическом вакууме, который фактически не существует. (Даже лучший вакуум, который мы можем создать, даже вакуум межзвездного пространства не является абсолютным.) С другой стороны, мнение Аристотеля о том, что более тяжелые объекты падают более быстро, чем легкие, — истинно, по крайней мере до некоторой степени, в реальном мире. Однако его нельзя привести к простому математическому выражению, поскольку скорость падения тел зависит не только от их веса, но также и от их формы.
Можно считать, что следует придерживаться реальности любой ценой. Однако хотя это может быть и правильно с моральной точки зрения, такой подход далеко не самый полезный и удобный. Сами греки в своей геометрии предпочли идеальный подход реальному и продемонстрировали, что гораздо больших результатов можно достигнуть рассмотрением абстрактных линий и форм, чем изучением реальных линий и форм мира; большее понимание, полученное при помощи абстракции, можно удачно применять при подходе к той самой действительности, которая игнорировалась в процессе получения знания.
Почти четыре столетия опытов, начиная с эпохи Галилео, показали, что часто более полезно отбыть из реального мира и построить «модель» изучаемой системы; в такой модели отбрасываются некоторые из усложнений, поэтому из оставшегося Может быть создана простая и обобщенная математическая структура. Как только это сделано, мы можем начать восстанавливать один за другим факторы усложнения и соответственно изменять взаимоотношения. Попытка же учесть все взаимосвязи сложностей действительности без предварительной разработки упрощенной модели является настолько трудным делом, что фактически никогда не была предпринята, и мы смеем предположить, что если бы такая попытка и была предпринята, то вряд ли бы увенчалась успехом.
Таким образом, бесполезно судить, являются ли взгляды Галилео «истинными», а Аристотеля «ложными» или наоборот. В отношении скоростей падения тел имеются аргументы, которые поддерживают как одну точку зрения, так и другую. Что мы можем сказать наверняка, так это то, что взгляды Галилео на движение, как оказалось, объяснили намного больше и в более простой форме, чем это сделали взгляды Аристотеля. Поэтому Галилеево представление о движении было гораздо более пригодным. Последнее было признано вскоре после того, как были описаны эксперименты Галилео и аристотелевская физика рухнула.
Если мы будем измерять расстояние, пройденное телом, катящимся вниз по наклонной плоскости, мы обнаружим, что тело последовательно покрывает все большие и большие расстояния за равные временные интервалы.
То есть мы видим, что в первую секунду тело прошло расстояние в 2 фута; в следующую секунду оно прошло уже 6 футов при полном расстоянии в 8 футов; в третью секунду — 10 футов при расстоянии в 18 футов; в четвертую секунду — 14 футов при полном расстоянии в 32 фута. Ясно, что с течением времени шар катится все более и более быстро.
Это само по себе не идет вразрез с аристотелевской физикой, поскольку теория Аристотеля не говорит ничего относительно того, как изменяется со временем скорость падающего тела. Фактически это увеличение в скорости соотносится с аристотелевским представлением, поскольку можно сказать, что, так как тело приближается к своему естественному месту, его «рвение» попасть туда усиливается, что приводит к соответствующему увеличению скорости.
Однако важность метода Галилео заключается в том, что он подошел к вопросу изменения скорости не качественным, а количественным способом. Недостаточно просто сказать «скорость увеличивается со временем». Если это представляется возможным, надо сказать, насколько она увеличивается, и постараться разработать точную взаимосвязь скорости и времени.
Например, если шар проходит 2 фута за одну секунду, 8 футов за две секунды, 18 футов за три секунды и 32 фута за четыре секунды, то, казалось бы, имеется взаимосвязь между пройденным расстоянием и квадратом затраченного на его прохождение времени. Как мы видим, 2 равно 2 х 12, 8 равно 2 х 22, 18 равно 2 х 32, и 32 равно 2 х 42. Мы можем определить эти отношения, сказав, что полное расстояние, покрытое шаром, катящимся вниз по наклонной плоскости (или объектом, находящимся в свободном падении) со старта из состояния покоя, — прямо пропорционально квадрату затраченного времени.
Физика приняла этот акцент на точное измерение, который предложил Галилео, аналогично поступили и другие области науки, везде, где это было возможно. (Тот факт, что химики и биологи не приняли математического отношения в полной мере, как это сделали физики, не говорит о том, что химики и биологи являются менее интеллектуальными или менее точными, чем физики. На самом деле это произошло потому, что системы, изучаемые физиками, более просты, чем те, которые изучают химики и биологи, и более легко могут быть приведены к идеализированному виду, в котором их можно было бы выразить в простой математической форме.)
Теперь рассмотрим шар, который проходит 2 фута в секунду. Его средняя «скорость» (расстояние, которое он покрывает в единицу времени) на протяжении этого односекундного интервала равна двум футам, поделенным на одну секунду. Легко разделить 2 на 1, но важно запомнить, что мы также должны разделить и единицы измерения: «футы» на «секунды». Мы можем выразить это деление единиц измерения обычным способом — в виде дроби. Другими словами, 2 фута, разделенные на 1 секунду, могут быть выражены как (2 фута)/( 1 секунду), или 2 фута в секунду. Эта запись может быть сокращена как 2 фт/с, и обычно читается как «два фута за секунду». Важно, чтобы использование «за» не обмануло нас, создав впечатление, что мы в действительности имеем дело с умножением. Мы имеем дело с дробью, то есть делением, и, несмотря на то что числитель и знаменатель этой дроби содержат единицы измерения, а не числа, она не перестает быть дробью.
Но вернемся к катящемуся шару… За одну секунду он проходит 2 фута при средней скорости 2 фт/с; за две секунды — 8 футов при средней скорости по полному расстоянию 4 фт/с; за три секунды — 18 футов при средней скорости по полному расстоянию 6 фт/с. И как вы можете лично убедиться, средняя скорость в течение первых четырех секунд — 8 фт/с. Средняя скорость, как и сказано, находится в прямой пропорции к затраченному времени.
Здесь, однако, мы имеем дело со средними скоростями. А какова же скорость катящегося шара в каждый конкретный момент? Рассмотрим первую секунду временного интервала. В течение этой секунды шар катится со средней скоростью 2 фт/с. Он начинает двигаться с малой скоростью. На самом деле он начинает двигаться из состояния покоя — его скорость в начале движения (другими словами, после того как прошло 0 секунд) была 0 фт/с. Чтобы получить среднее значение в 2 фт/с, шар должен достичь соответственно более высокой скорости во второй половине временного интервала (то есть после начала движения). Если мы предположим, что скорость повышается плавно по времени, то из этого следует, что если скорость в начале временного интервала была на 2 фт/с меньше, чем среднее значение, то в конце временного интервала (после того как прошла еще секунда) она должна быть больше на 2 фт/с, чем среднее значение, то есть 4 фт/с.
Если следовать той же логике рассуждения, которую мы использовали для средних скоростей в течение первых двух секунд, для первых трех секунд и далее мы получим следующие значения скорости: в 0 секунд — 0 фт/с; через одну секунду (в этот момент) — 4 фт/с; через две секунды — 8 фт/с; через три секунды — 12 фт/с; через четыре секунды — 16 фт/с и так далее.
Обратите внимание на то, что после каждой секунды скорость увеличивалась точно на 4 фт/с. Такое изменение скорости со временем называется «ускорением» (от латинских слов, означающих «добавить скорость»). Чтобы определить значение ускорения, мы должны разделить увеличение скорости в течение специфического интервала времени на значение этого интервала времени. Например, если в первую секунду скорость была 4 фт/с, в то время как в четвертую секунду она была равна 16 фт/с, то за время интервала 2 — 3 секунды она возросла на 12 фт/с. Ускорение в этом случае равно: 12 фт/с разделить на три секунды. (Обратите внимание, что в этом случае мы делим не 12 фт/с на 3, а 12 фт/с на 3 секунды. Во всех выражениях, где есть единицы измерения, они должны быть включены в любое математическое преобразование.)
Когда мы делим 12 фт/с на 3 секунды, получаем ответ, в котором единицы измерения так же, как и числовые значения, подвергаются делению, — другими словами, 4 фт/с разделить на с. Это может быть записано в виде 4 фт/с/с (читается «четыре фута в секунду за секунду»). Как мы знаем, и алгебраическом преобразовании a/b разделить на b равно a/b, умноженному 1/b, соответственно окончательный результат равен a/b2. Теперь преобразуем единицы измерения по тому же принципу, мы получим (4 фт/с)/с , то есть 4 фт/с2 (читается «четыре фута на секунду в квадрате»).
Как вы можете видеть в данном случае, если посчитаете ускорение для любого временного интервала, ответ будет всегда тот же самый: 4 фт/с2. Для разных наклонных плоскостей ускорение будет различно в зависимости от степени наклона, но оно останется постоянным (константой) для любой данной наклонной плоскости в любой интервал времени.
Таким образом, мы можем выразить открытие Галилео относительно падающих тел более простым и более наглядным способом. Сказать, что все тела преодолевают равные расстояния за равные промежутки времени, будет правильно; однако это не говорит ничего о том, падают ли тела с равномерными скоростями, равноускоренно или с неравномерными скоростями. Еще раз, если мы говорим, что все тела падают с равными скоростями, мы ничего не говорим относительно того, как эти скорости могут изменяться по времени.
Теперь мы можем сказать, что все тела независимо от веса (мы пренебрегаем сопротивлением воздуха) катятся вниз по наклонным плоскостям или свободно падают с равным и постоянным ускорением. Если сказанное верно, из этого следует неизбежно, что два падающих тела проходят одно и то же расстояние за одинаковое время и что в любой данный момент они падают с одной и той же скоростью (предполагая, что они начали падать в одно и то же время). Это также говорит нам о том, что скорость тел увеличивается со временем и что она увеличивается на постоянную величину.
Общепринято выражать такие взаимоотношения при помощи математических символов. При таком способе мы не привносим в них ничего существенно нового. Используя математические символы, мы выражаем именно то, что мы хотели бы сказать словами, но более кратко и более общо. Математика — язык стенографии, в котором каждый символ имеет точное и согласованное значение. Как только язык изучен, мы понимаем, что это, в конце концов, всего лишь одна из форм английского языка.
Например, мы только что рассмотрели случай ускорения 4 фт/с2 (из состояния покоя). Это означает, что в конце первой секунды скорость объекта равна 4 фт/с, после двух секунд — 8 фт/с, после трех секунд — 12 фт/с и так далее. Короче говоря, скорость равна ускорению, умноженному на время. Если мы обозначим скорость символом v, а время — символом t, мы можем сказать, что в этом случае v равна 4t.
Но фактическое ускорение зависит от угла, под которым отклонена наклонная плоскость. Если наклонная плоскость сделана более крутой, это приведет к увеличению ускорения; если сделать ее менее крутой, то ускорение уменьшится. Для любой данной плоскости ускорение постоянно, но специфическое значение константы может очень измениться от плоскости к плоскости. Позвольте нам поэтому не привязываться к конкретному числовому значению ускорения, давайте просто обозначим это ускорение символом а. Тогда мы можем сказать:
Важно помнить, что такие уравнения в физике включают в себя не только числа, но и единицы измерения. Таким образом, а в уравнении 2.1 не представляет собой число, например, скажем, 4, а представляет собой число и его единицы измерения — 4 фт/с2 — единицы измерения, соответствующие ускорению. Так же и t, которым обозначают время, представляет собой число и его единицы измерения, например три секунды (3 с). Рассчитывая at, мы умножаем 4 фт/с2 на 3 с, перемножая единицы измерения так же, как цифры. Преобразовывая единицы измерения так, как если бы они были дробями (другими словами, как если бы мы должны были умножить a/b2 на b), получаем произведение, равное 12 фт/с. Таким образом, умножение ускорения (а) на время (t) действительно дает нам скорость (v), а полученные единицы измерения фт/с, соответствующие скорости, подтверждают правильность нашего преобразования.
В любом уравнении в физике единицы измерения, находящиеся по обеим сторонам знака равенства, должны быть сбалансированы после того, как закончены все необходимые алгебраические преобразования. Если этот баланс не получен, то уравнение не соответствует действительности и не может быть названо верным. Если единицы измерения какого-либо из символов неизвестны, они могут быть определены посредством решения того, какой единицы недостаточно для того, чтобы сбалансировать уравнение (это иногда еще называют «анализом размерностей»).
Теперь, учитывая все предыдущее, рассмотрим шар, начинающий движение из состояния покоя и катящийся вниз по наклонной плоскости в течение t секунд. Так, шар начинает свое движение из состояния покоя, его скорость в начале временного интервала равна 0 фт/с. Согласно уравнению 2.1, в конце временного интервала во время / его скорость v равна at фт/с. Чтобы получить среднюю скорость на всем временном интервале равномерного увеличения скорости, мы берем сумму первоначальной и заключительной скорости (0 + at) и делим ее на 2. Таким образом, средняя скорость в течение временного интервала равна at/2. Расстояние (d), которое прошел шар за это время, должно быть равно средней скорости, умноженной на время, то есть at/2xt. Поэтому мы можем написать, что
Я не буду пытаться проверять единицы измерения для каждого представленного в книге уравнения, но сделаю это для данного. Единицы измерения ускорения (а) — фт/с2, а единицы измерения времени (t) — с (секунды). Поэтому итоговые единицы измерения равны at2 — (фт/с2) ∙ с ∙ с, то есть (фт∙с2)/с2, упростив это выражение, получаем просто фт (футы). От деления на 2 at2 не изменяется, так же как с2, так как 2 в этом случае — «чистое число», то есть оно не имеет единиц измерения. (Так же как, если вы делите линейку длиной в фут на два, каждая половина имеет длину 12 дюймов, разделенных на 2 или на 6 дюймов. На единицу измерения это же не оказывает эффекта.) Таким образом, получающиеся единицы измерения at2/2 — фт (футы), что соответствует единицам, применяемым для измерения расстояния (d).
Как я сказал ранее, значение ускорения (а) шара, катящегося вниз по наклонной плоскости, изменяется в соответствии с углом наклона плоскости. Чем более крутая плоскость, тем больше значение а.