Сказка о том, как астрономы и часовщики спасали моряков - Горькавый Ник. 2 стр.


— Верно! — просиял Майкл и быстро написал на листке бумаги слева «45 градусов», а справа единицу.

— А если длина тени стремится к нулю, то и угол равен нулю! — и Майкл добавил два нуля в таблицу — только в самый низ страницы.

— Теперь будем задавать другие значения отношения длин тени и зонта — от нуля до единицы, а потом измерим получившиеся углы. Так мы заполним все строчки в таблице. Например, для отношения длины тени и зонта, равного 0,5, мы можем измерить верхний угол, и он окажется равным 26,6 градуса. Можешь ли ты, Галатея, заполнить такую таблицу сама, если я дам тебе линейку для черчения треугольников и угломер для измерения углов?

— Конечно, могу, — заявила Галатея.

— Прекрасно! — улыбнулся Майкл. — Теперь представь, что какой-то древний математик сделал это впервые, посмотрел в таблицу и сказал: «Отношение горизонтальной и вертикальной сторон в таком прямоугольном треугольнике есть функция верхнего угла. Отныне пусть эта функция называется тангенсом!»

— Вот так просто? — не поверила ушам Галатея. — Составить таблицу примитивных измерений и объявить это тангенсом?

— Да, только надо сделать это первым. А потом надо ввести таблицу во все калькуляторы, чтобы я мог задать калькулятору любую длину тени, а он, сверившись с таблицей тангенсов, сразу выдал бы мне величину верхнего угла в выбранном мной треугольнике.

— Если я возьму и составлю таблицу отношений длины горизонтальной тени не к длине зонта, а к длине наклонной линии в этом треугольнике и буду потом измерять верхний угол, это ведь будет другая функция? — спросила недоумевающая Галатея.

— Конечно! — воскликнул Майкл.

— Это будет функция, которая называется синусом!

Галатея напряжённо впилась взглядом в таблицу.

Дети спорили про синусы и тангенсы, пока не принесли вкуснейшие пирожные и душистый чёрный чай с мятой. Пока то да сё, время пролетело, и позвонил Роберт.

— У нас Солнце достигло максимальной высоты в 13 часов и 22 минуты!

Майкл уточнил:

— По гринвичскому времени, которое отстаёт от нашего на целый час, так как располагается в другом часовом поясе. Итак, гринвичский полдень настал позже нашего на 1 час и 4 минуты. Земля делает оборот в 360 градусов за 24 часа, следовательно, запаздывание Солнца на 4 минуты соответствует смещению долготы на один градус. Значит, между нами и Гринвичским меридианом примерно 16 градусов. Долгота Гринвичского меридиана — ноль, это означает, что наше местоположение соответствует 16 градусам восточной долготы. Роберт, а какой угол отбрасывала ваша тень в этот момент?

— 41,5 градуса от вертикали.

— Значит, разница в широтах между нами и Гринвичем — 12 градусов. Каждый моряк знает, что широта Гринвича — 51,5 градуса, значит, он легко найдёт нашу широту — 39,5 градуса северной широты.

— Здорово! — восхищённо сказал Андрей, а Галатея недоверчиво покачала головой и попросила принести географическую карту. Принесли карту Европы, и Галатея поползла — или поплыла? — по ней, пыхтя, как старый паровой буксир. Потом она спросила:

— А если бы мы находились не в Бельведере-Мариттимо, а в испанской Валенсии? Она расположена возле нулевой долготы, значит, Солнце в Лондоне и в Валенсии достигает максимальной высоты в одно время?

— Да, между этими городами существует лишь разница в широтах. Кстати, ты можешь определить по карте расстояние между Валенсией и Лондоном?

Галатея с помощью Андрея и линейки измерила расстояние между городами.

— 1335 километров!

— Отлично! — обрадовался Майкл.

— А вот теперь догадайтесь, как можно определить длину окружности Земли, зная, что между широтами Лондона и Валенсии разница в 12 градусов, а расстояние между этими городами 1335 километров? Такую задачку в своё время решил древнегреческий математик и астроном Эратосфен (276 г. до н.э. — 194 г. до н.э.) для двух египетских городов, расположенных примерно на одной долготе.

Дети задумались. Первым сообразил Андрей:

— 12 градусов — одна тридцатая окружности в 360 градусов! Значит, длина земной окружности в 30 раз больше, чем расстояние между Лондоном и Валенсией. Это будет… это будет 40 тысяч километров и ещё… ещё 50 километров!

Майкл восхитился:

— Прекрасный, очень точный ответ!

Галатея немедленно надулась на Андрея.

Майкл спросил:

— Ну, теперь понятно, как точные часы, которые ходят одинаково в разных точках мира, могут помочь определить широту и долготу? Если бы у меня были таблицы времени достижения максимальной высоты Солнца в Гринвиче каждый день, то я смог бы определить наши координаты без помощи Роберта. Таблицами, указывающими положение Солнца на год вперёд, пользовались моряки прошлых веков. Они замеряли время максимальной высоты Солнца в разных концах света, куда их заносила судьба. Но во времена Ньютона самые точные часы были снабжены механическим маятником. В условиях качки такие хронометры могли отставать на десять минут в сутки, и за долгие месяцы плавания ошибка в ходе часов накапливалась огромная.

Таким образом, чтобы определять долготу третьим способом, нужно было создать часы, которые выдерживали бы качку, перепад температур и точно работали и в жарких океанских тропиках, и в морях, покрытых льдами…

Парламент выслушал доклад Ньютона и постановил объявить награду в двадцать тысяч фунтов стерлингов за решение проблемы определения долготы в море с точностью до половины градуса. По тем временам это были огромные деньги — примерно пять миллионов нынешних долларов. За дело взялись и астрономы, и часовщики. Первые накапливали наблюдения за Луной и усовершенствовали теорию её движения, чтобы любой штурман, измерив положение Луны относительно звёзд и сверившись с лунными таблицами, смог определять положение корабля в открытом океане.

Над «проблемой долготы» трудился и Джон Флемстид, но он умер, не закончив дела. На посту королевского астронома его сменил Галлей. Новый наблюдатель Гринвичской обсерватории знал, что для усовершенствования теории движения Луны наш спутник нужно наблюдать как минимум восемнадцать лет. Галлею было тогда больше шестидесяти, и он понимал, что шансов закончить работу у него немного, но взялся за дело с энтузиазмом. Звёзды были благосклонны к астроному: Галлей наблюдал Луну до самой смерти, больше двадцати лет.

Леонард Эйлер (1707-1783) в России, Джеймс Брэдли (1693-1762) в Англии, Алекси Клеро (1713-1765) во Франции, Тобиас Майер (1723- 1762) в Германии, другие математики и астрономы подхватили эстафету и создали таблицы положения Луны и Солнца. Самые точные из них составил Майер на основе теории Эйлера. Жена Майера отправила его рукопись в Англию, в Совет по долготе. Астроном Невил Маскелайн (1732-1811) успешно испытал таблицы Майера в путешествии к острову Барбадос в Карибском море, после чего британский парламент премировал Эйлера и вдову Майера за астрономическое решение «проблемы долготы».

Маскелайн, который стал королевским астрономом в тридцать три года, сумел донести астрономическое решение «проблемы долготы» до каждого штурмана. Основываясь на трудах Майера, молодой астроном задумал и издал в 1766 году «Морской альманах и астрономические эфемериды на 1767 г.» — книгу таблиц, в которых предсказывалось положение планет и Луны на год вперёд с периодом три часа. С их помощью штурманы всего за полчаса наблюдений за Луной и расчётов определяли точное положение корабля в море. Девяносто тысяч астрономических наблюдений сделал за свою жизнь Маскелайн. Почти полвека, до самой своей смерти, он выпускал ежегодный «Морской альманах», который верно служил морякам, спасая их от рифов и мелей, и издаётся до сих пор.

Параллельно с астрономами над «проблемой долготы» бились и часовщики. Узнав про огромную награду, обещанную британским парламентом, Джон Харрисон, йоркширский плотник и часовщик, решил построить точные морские часы. Семь лет он конструировал свой хронометр без обычного маятника. Первый его экземпляр испытали в путешествии в Лиссабон в 1736 году. Часы показали себя отлично, но весили они 35 кг и были высотой полтора метра. Парламентская комиссия дала часовщику деньги на изготовление более компактного хронометра. Тридцать лет совершенствовал Харрисон свои часы, пока те не стали умещаться на ладони. Первые морские хронометры были очень дороги — примерно треть цены постройки военного корабля. На новый хронометр Харрисона было получено подтверждение, что его можно копировать и выпускать серийно. Только после этого, в 1773 году, английский парламент выдал часовщику заслуженную награду.

Итак, «проблему долготы» удалось решить и астрономам, и часовщикам. От этого соревнования выиграли все моряки мира. Отправляясь в 1768 году в своё первое кругосветное путешествие, капитан Кук взял с собой копию хронометра Харрисона и астрономические таблицы положения Луны. Он успешно использовал оба способа определения координат. Плавание кораблей в океане стало гораздо безопаснее.

— Майкл! — воскликнул Андрей. — Как ты можешь говорить о безопасности, если капитана Кука в его третьем путешествии съели туземцы Гавайских островов?

— Ну, — сказал Майкл, — это была не научная, а… э-э… дипломатическая проблема. Астрономы и часовщики сделали так, чтобы моряки всегда знали, где они находятся, а что и как делать, они должны решать сами.

— Астрономы за людоедов не отвечают! — согласилась Галатея. Честно признаться, она не очень поняла про Луну и долготу. Да и морской хронометр размером с ладонь взрослого человека показался ей великоватым.

«Трудно жилось этим древним людям!» — вздохнула девочка, покосившись на свои крохотные и очень точные электронные часики.

Назад