Здесь перед нами возникает обратная задача. Нужно сигналы разной силы, следующие друг за другом, превратить в изображение, т. е. в совокупность более светлых и более тёмных точек, расположенных в определённом порядке рядом друг с другом. Для этого прежде всего необходимо электрические сигналы, т. е. токи различной силы, превратить в сигналы световые — в более сильные или более слабые вспышки света.
Как это можно сделать?
Для этого переменный электрический ток, пройдя усилитель, пропускается через особый прибор, так называемый модулятор света. Этот прибор помещается на пути пучка лучей постоянной яркости. В зависимости от силы электрического тока, проходящего через модулятор, меняется прозрачность этого прибора. Благодаря этому и пучок света, проходящий через модулятор, становится переменным по яркости— он будет то ярче, то слабее — в зависимости от силы протекающего через модулятор электрического тока.
Чтобы теперь превратить эту совокупность различных по яркости световых сигналов в изображение, «мигающий» пучок света направляют на фотографическую бумагу, укреплённую на таком же барабане, как и барабан передающей станции.
Этот барабан также вращается и одновременно подвигается вдоль своей оси. Благодаря этому луч света, падающий на бумагу, вычерчивает на ней винтовую линию. Такой линией постепенно покрывается вся поверхность фотобумаги. Но так как яркость падающего луча постоянно меняется, то на бумаге, после её проявления, вместо линии возникает ряд светлых и тёмных точек, которые в точности соответствуют таким же точкам на оригинале.
Таким образом, для того чтобы на приёмной станции мы получили точную копню этого оригинала, нужно только позаботиться о том, чтобы движение обоих барабанов — передающего и принимающего — происходило строго согласованно. Это осуществляется особыми, так называемыми «синхронизирующими» устройствами.
Так с помощью «электрического глаза» производится передача на расстояние неподвижных изображений.
Однако, как ни хорош фототелеграф, всё же он пригоден лишь для передачи неподвижных, «мёртвых» изображений: фотографий, чертежей, рукописей и т. п. А нельзя ли подобным же путём осуществить и передачу «живых», движущихся изображений? Нельзя ли передавать на большие расстояния непосредственное изображение говорящего оратора или играющего актёра, не прибегая к предварительному фотографированию этого актёра или оратора?
Можно. Такая передача «живых» изображений на далёкое расстояние называется телевидением.
Принцип телевидения — тот же, что и фототелеграфии. Изображение передаваемого объекта нужно разложить на очень большое количество светлых и тёмных точек, т. е. превратить его в ряд последовательных световых сигналов разной силы. Эти световые сигналы фотоэлемент превращает в сигналы электрические, которые можно с помощью радиоволн или по проводам передать в нужное место. Там электрические сигналы превращаются в световые, а из последних «собирается» изображение.
Понятно, однако, что технически задача телевидения гораздо сложнее, чем задача фототелеграфии. Живые люди — это не фотография, которую можно положить на вращающийся барабан фототелеграфа. Нужно найти какие-то иные способы «прощупывания» лучом всей изображаемой сцены. Кроме того, весь этот процесс «прощупывания» нужно совершать очень быстро. Чтобы можно было передавать изображения движущихся предметов, нужно, чтобы световой луч пробежал по всему изображению за очень малое время — не больше чем за 1/24 долю секунды. И за это короткое время луч должен «разложить» изображение на много тысяч отдельных точек-сигналов.
Тем не менее со всеми этими трудностями советская техника успешно справилась. Сейчас наши станции регулярно ведут телевизионные передачи, а наша промышленность выпускает телевизоры — приборы, дающие возможность непосредственно видеть на экране живые сцены: отрывки пьес, выступающих актёров и т. п.
Если кино когда-то называли «Великим немым», то радио до недавнего времени можно было назвать «Великим слепым». Теперь же фотоэлемент дал возможность заговорить «Великому немому» и прозреть «Великому слепому». С помощью этого прибора мы теперь слышим в кино и видим по радио.
Глаз человека воспринимает, как свет, только излучение с длинами волн, лежащими от 4/100 000 до 8/100 000 сантиметра. Все остальные волны — и более длинные и более короткие — ощущения света не создают. К ним наш глаз не чувствителен, и поэтому, как бы сильно мы ни «осветили» тело этими лучами, оно останется тёмным, невидимым. Однако, как говорилось, некоторые типы фотоэлементов «чувствуют» не только видимые лучи, но и невидимые, например инфракрасные лучи.
Возникает заманчивая мысль: а нельзя ли с помощью таких фотоэлементов построить прибор, который даст возможность видеть предметы, освещённые только инфракрасными лучами, т. е. невидимые нашими глазами? Понятно, какое важное значение имели бы такие приборы, прежде всего в военной технике. Прожекторы, которыми пользуются ночью для наблюдения за противником, имеют один очень серьёзный недостаток: они демаскируют того, кто ими пользуется, выдают противнику его присутствие. Насколько было бы удобнее, если бы мы могли в невидимых лучах наблюдать все предметы так же, как в видимых!
Закрыть прожектор таким стеклом, которое совсем не пропускало бы видимых лучей, но хорошо пропускало бы лучи инфракрасные, нетрудно. Такие стёкла имеются, да и инфракрасных лучей в свете прожектора имеется очень много. Но как превратить невидимое изображение предмета, освещённое этими лучами, в изображение, которое мы могли бы видеть глазами?
Рисунок 17 изображает в очень упрощённом, схематическом виде замечательный прибор, который решает задачу и даёт возможность «видеть в темноте».
Рис. 17. Упрощённая схема прибора, с помощью которого можно видеть в темноте.
Вы видите, что этот прибор представляет собой просто «стаканчик» с двумя плоскими донышками. Воздух из пространства между донышками откачан. На внутреннюю сторону нижнего, наружного, донышка нанесён тонкий слой вещества, «чувствующего» только инфракрасные лучи. Это — катод нашего прибора — фотоэлемента: из него под действием инфракрасных лучей вырываются электроны.
На внутреннюю сторону второго донышка нанесён слой особого вещества — люминофора, который обладает способностью светиться ярким зелёным светом, когда на него падают электроны, летящие с большой скоростью. Этот слой играет роль анода нашего фотоэлемента: он воспринимает электроны, вырванные из катода.
Как и всегда светочувствительный слой — катод — соединяют с отрицательным полюсом батареи, а анод — с её положительным полюсом. Однако в отличие от обычных фотоэлементов, в которых напряжение между катодом и анодом составляет несколько десятков или две-три сотни вольт, здесь применяют напряжение в несколько тысяч или даже десятков тысяч вольт, так что электроны летят к аноду с огромными скоростями.
Перед «стаканчиком» помещают объектив, подобный объективу обычного фотоаппарата или бинокля. Этот объектив создаёт на светочувствительной поверхности наружного донышка изображение тех предметов, которые мы рассматриваем. Но так как мы осветили наш предмет только невидимыми, инфракрасными лучами, то понятно, что изображение это на катоде тоже невидимое — невооружённым глазом мы его не видим. Однако оно существует, и количество электронов, вырываемых из того или иного места катода, будет тем больше, чем сильнее освещено инфракрасными лучами это место. В «светлых» (по отношению к инфракрасным лучам) местах изображения поток электронов, летящих к аноду, будет обильнее, чем в местах «тёмных». Попадая на слой люминофора, эти электроны вызывают его свечение, которое, естественно, будет тем сильнее, чем больше электронов попадёт в данное место слоя.
Таким образом, те места люминофорного слоя, которые находятся против сильно освещённых инфракрасными лучами мест катода, будут светиться сильно, а те места, которые находятся против более «тёмных» мест изображения, будут светиться слабее. Иными словами, невидимое изображение, создаваемое на переднем донышке прибора инфракрасными лучами, превращается в видимое изображение на его заднем донышке!
Такие приборы найдут себе широкое применение не только в военной технике, по и в мирной жизни.
Почему в «ночных биноклях» используются инфракрасные лучи? Нельзя ли использовать и другие невидимые лучи, скажем ультрафиолетовые?
Можно. Можно устроить прибор, с помощью которого вы будете видеть и в ультрафиолетовых лучах. Однако такой «бинокль» будет много хуже — вы увидите хорошо через него только те предметы, которые находятся лишь на близком расстоянии от вас; более далёкие предметы видны не будут. Объясняется это тем, что ультрафиолетовые лучи в сильной степени поглощаются воздухом, а особенно пылью и туманом. Наоборот, для инфракрасных лучей пыль и туман прозрачны.
Уже много веков назад человек использовал свет для передачи различных сведений на расстояние. Так, запорожцы яркими кострами предупреждали жителей окружающих селений о нашествии врагов. Позднее строились высокие башни, с которых передавались на далёкие расстояния условные световые сигналы; при этом различные сигналы обозначали различные слова и фразы. Таким путём — можно было вести несложный разговор. Было много и других попыток использования света для целей телефонии. Но совершенный световой телефон был сконструирован только после изобретения «электрических глаз». Вот каким образом устроен световой телефон.
Вы говорите перед микрофоном на передающей станции. Микрофон соединён с источником постоянного тока. Благодаря колебаниям мембраны микрофона в нём возникает пульсирующий ток. Колебания тока в точности соответствуют звуковым колебаниям. Этот ток усиливается и поступает в дуговую лампу. Возникающий в лампе свет переменной яркости отражается вогнутым зеркалом и прямолинейным пучком направляется на приёмную станцию. Колебания силы света соответствуют колебаниям звуковой волны.
На приёмной станции свет принимается также на вогнутое зеркало (его форма совпадает с особой кривой — параболой), отражается этим зеркалом и падает на фотоэлемент. Фотоэлемент соединён с электрической батареей и телефоном. Благодаря падающему свету переменной силы в фотоэлементе возникает пульсирующий ток. Этот ток воздействует на мембрану телефона, и человек слышит слова, произносимые вами на передающей станции.
Так осуществляется разговор с помощью света на большое расстояние.
Ещё более интересно применение фотоэлементов в «читающих» машинах для слепых. Эта машина устроена таким образом, что при «чтении» книги буквы «говорят» — каждая буква издаёт свой особый звук!
Каким образом это делается?
Из машины на строку открытой книги направляются четыре тонких световых пучка. Они ведутся вдоль строчки так, что покрывают как раз все буквы по высоте. Отражённый от книги свет падает на фотоэлемент. Возникающие токи усиливаются и подводятся к телефону. Так как каждый из четырёх пучков света, проходя различные буквы, встречает на своём пути чёрные участки букв не в одно и то же время с другими пучками, то ясно, что при прохождении разных букв в телефоне будут слышны различные по тону и продолжительности звуки (помните, что свет по-разному отражается от чёрных и белых участков книги).
По характеру звуков слепой и узнаёт отдельные буквы.
«Читающей» машиной можно «читать» обыкновенный книжный шрифт!
Первые совершенные типы таких машин были созданы русскими изобретателями Тюриным и Б. Розингом ещё в начале XX века.
Позднее, в Институте экспериментальной медицины в Харькове, в 1929–1933 годах проф. И. А. Соколянский разработал ещё более интересную конструкцию «читающей» машины для слепоглухонемых; в ней буквы читаемой книги воспринимаются читателем на ощупь. Основной частью этой машины является также «электрический глаз».
Замечательную картину можно наблюдать в некоторых цехах наших передовых заводов. В них можно видеть длинную линию — «цепочку» сложнейших станков, которые «сами» производят обработку тех или иных изделий. В нужный момент станок включается, производит определённую операцию, меняет инструмент, снова работает, останавливается, передаёт изделие на следующий станок, а сам берётся за новое изделие и т. д. А люди? Людей почти не видно. Они наладили эту цепь «умных машин» — автоматов и лишь следят за их работой.
Каким образом работают подобные машины-автоматы?
Всякий автомат в нужный момент получает от какого-нибудь «чувствующего» устройства сигнал и по этому сигналу включает тот или иной «исполнительный» орган. В большинстве случаев и сигнал и средство исполнения являются электрическими.
Вот один из простых примеров. Работает токарный станок-самоход: когда суппорт с резцом доходит до определённого места, он нажимает кнопку и тем самым замыкает ток, даёт «сигнал».
По этому сигналу автоматически, без участия человека, останавливается один мотор или пускается в ход другой и т. п. Обычно электрический ток такого «сигнала» очень слаб, а «исполнительный» ток может быть уже очень сильным.
Приспособления или устройства, которые, получив слабые токи «сигнала», включают или выключают мощные «исполнительные» токи, называются реле.
Реле являются важнейшей составной частью всякого автоматического станка или машины. На рисунке 18 изображена схема устройства одного из наиболее простых типов реле.