Фейнмановские лекции по физике-2 - Фейнман Ричард Филлипс 21 стр.


Чем же объяснить, что при изменении скорости меняется закон сопротивления среды? Причины надо искать в изменении характера обтекания жидкостью движущегося в нем тела. На рис. 6.3 изображены два круговых цилиндра, движущихся в жидкости (ось цилиндра перпендикулярна к чертежу). При медленном движении жидкость плавно обтекает движущийся предмет - сила сопротивления, которую ему приходится преодолевать, есть сила вязкого трения (рис. 6.3, а). При большой скорости позади движущегося тела возникает сложное запутанное движение жидкости (рис. 6.3, б). В жидкости то появляются, то пропадают различные струйки, они образуют причудливы фигуры, кольца, вихри. Карта на струек все время меняется. Появление этого движения, называемого турбулентным, в корне меняет закон сопротивления.

Массы гелия, связанные с сверхтекучим и нормальным движением, не одинаковы. Отношение их зависит от температуры. Чем ниже температура, тем больше сверхтекучая часть массы гелия. При абсолютном нуле весь гелий становится сверхтекучим. По мере повышения температуры все большая часть гелия начинает вести себя нормально и при температуре 2,19 К весь гелий становится нормальным, приобретает свойства обычной жидкости.

Но у читателя уже вертятся на языке вопросы: что же это за сверхтекучий гелий, как может частица жидкости участвовать одновременно в двух движениях, как объяснить сам факт- двух движений одной частицы?.. К сожалению, мы вынуждены оставить здесь все эти вопросы без ответа. Теория гелия II слишком сложна, и чтобы ее понять, надо знать очень много.

Упругость - это способность тела восстанавливать свою форму после того, как сила перестала действовать. Если к метровой стальной проволоке с поперечным сечением в 1 мм2 подвесить килограммовую гирю, то проволока растянется. Растяжение незначительно, всего лишь 0,5 мм, но его нетрудно заметить. Если гирю снять, то проволока сократится на те же 0,5 мм, и метка вернется в прежнее положение. Такая деформация и называется упругой.

Заметим, что проволока сечением в 1 мм2 под действием силы в 1 кгс и проволока сечением в 1 см2 под действием силы в 100 кгс находятся, как говорят, в одинаковых условиях механического напряжения. Поэтому поведение материала всегда надо описывать, указывая не силу (что беспредметно, если сечение тела неизвестно), а напряжение, т. е. силу, приходящуюся на единицу площади. Обычные тела - металлы, стекло, камни - можно упруго растянуть в лучшем случае всего лишь на несколько процентов. Выдающимися упругими свойствами обладает резина. Резину можно упруго растянуть не несколько сот процентов (т. е. сделать ее вдвое и втрое больше первоначальной длины), а отпустив такой резиновый шнур, мы увидим, что он вернется в исходное состояние.

Все без исключения тела под действием небольших сил ведут себя упруго. Однако предел упругому поведению наступает у одних тел раньше, у других значительно позже. Например, у таких мягких металлов, как свинец, предел упругости наступает уже, если подвесить к концу проволоки миллиметрового сечения груз 0,2-0,3 кгс. У таких твердых материалов, как сталь, этот предел примерно в 100 раз выше, т. е. лежит около 25 кгс.

По отношению к большим силам, превосходящим предел упругости, разные тела можно грубо разделить на два класса - такие, как стекло, т. е. хрупкие, и такие, как глина, т. е. пластичные.

Если прижать палец к куску глины, он оставит отпечаток, в точности передающий даже сложные завитушки рисунка кожи. Молоток, если им ударить по куску мягкого железа или свинца, оставит четкий след. Воздействия нет, а деформация осталась - ее называют пластической или остаточной. Таких остаточных следов не удастся получить на стекле: если упорствовать в этом намерении, то стекло разрушится. Столь же хрупки некоторые металлы и сплавы, например чугун. Железное ведро под ударом молота сплющится, а чугунный котелок расколется. О прочности хрупких тел можно судить по следующим цифрам. Чтобы превратить в порошок кусок чугуна, надо действовать с силой около 50-80 кгс на квадратный миллиметр поверхности. Для кирпича эта цифра падает до 1,5-3 кгс.

Как и всякая классификация, деление тел на хрупкие и пластичные в достаточной степени условно. Прежде всего хрупкое при малой температуре тело может стать пластичным при более высоких температурах. Стекло можно превосходно обрабатывать, как пластический материал, если нагреть его до температуры в несколько сот градусов.

Назад Дальше