Большое, малое и человеческий разум - Хокинг Стивен 5 стр.


Геометрия Евклида, которая на расстояниях порядка метров имеет точность порядка диаметра атома водорода. Как я уже отмечал в гл. 1, общая теория относительности не позволяет ей быть абсолютно точной, однако для практических целей точность евклидовой геометрии всегда исключительно высока.

Механика Ньютона, точность которой доходит до10-7 (для дальнейшего повышения точности необходимо учитывать релятивистские эффекты).

Электродинамика Максвелла, которая в сочетании с квантовой механикой достаточно хорошо описывает взаимодействия при изменении масштаба в 1035 раз, т. е. от размеров элементарных частиц до межгалактических расстояний.

Эйнштейновская теория относительности, о которой я уже рассказывал в гл. 1. В той области, где она применима (и где она обобщает и включает в себя квантовую механику), точность этой теории доходит до 10-14, что на семь порядков превышает точность механики Ньютона.

Квантовая механика, которая является темой этой главы и также представляет собой весьма точную теорию. Например, в квантовой электродинамике, представляющей собой сочетание квантовой механики, электродинамики Максвелла и специальной теории относительности, точность некоторых расчетов доходит до 10-11. В частности, можно особо отметить, что используемая в квантовой электродинамике так называемая «система единиц Дирака» включает в себя вычисленное значение магнитного момента электрона 1,001159652(46), которое прекрасно согласуется с экспериментально найденным значением 1,0011596521(93).

Особенно важно то, что во всех указанных теориях применение математических методов не только обеспечивает исключительную эффективность и точность описания физической картины, но и представляет интерес для развития самой математики, поскольку некоторые наиболее плодотворные идеи ее развития возникли именно на основе теоретических построений физики. В качестве примера можно указать обширные разделы математики, возникновение и развитие которых было обусловлено физическими исследованиями:

• теория действительных чисел;

• геометрия Евклида;

• математический анализ и теория дифференциальных уравнений;

• геометрия симплексов;

• дифференциальные формы и уравнения в частных производных;

• геометрии Римана и Минковского;

• теория комплексных чисел;

• теория гильбертова пространства;

• теория функциональных интегралов... и т. д.

Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.

В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.

Рис. 2.1.

Для комплексных чисел, представленных точками на такой диаграмме, определены разнообразные правила сложения, умножения и т. д. Например, для сложения таких чисел используется правило параллелограмма, в соответствии с которым действительные и мнимые части этих чисел просто складываются по отдельности (рис. 2.3, б), для умножения — так называемое правило подобия треугольников (рис. 2.3, в) и т. п. Для специалистов, привыкших работать с такими диаграммами, комплексные числа быстро перестают казаться чем-то абстрактным и таинственным, поэтому читатель не должен думать, что их использование в квантовой механике делает эту теорию особенно сложной или трудно воспринимаемой. В действительности комплексные числа широко используются в самых различных областях науки и техники, они являются достаточно простыми, и очень многие люди воспринимают их весьма конкретно. Так что читателя не должна беспокоить их кажущаяся (мнимая) сложность.

Однако проблемы квантовой механики не сводятся только к суперпозиции состояний с использованием комплексных чисел. До сих пор мы говорили лишь о квантовом уровне (правила которого я обозначил выше буквой U), на котором состояние системы действительно задается суперпозицией всех возможных состояний, усредненных посредством некоторых комплексных множителей. Временная эволюция такого квантового состояния называется шредингеровской или унитарной (именно поэтому я использовал в обозначениях букву U). Важнейшим свойством эволюции такого типа является линейность, т. е. для эволюции суперпозиции двух состояний можно считать, что каждое из состояний изменяется по индивидуальному закону, однако комплексные коэффициенты, по которым осуществляется усреднение, остаются постоянными. Такая линейность является характерной особенностью уравнения Шредингера, и на квантовом уровне это условие действительно выполняется для любой суперпозиции состояний.

Однако при увеличении масштаба какой-либо характерной величины происходит изменение правил. В теории увеличение масштабов соответствует переходу от квантового уровня U к классическому уровню С (этот переход обозначен на рис. 2.1 буквой R), а для физического эксперимента это означает, например, рассмотрение участка на экране. При таком переходе мелкомасштабное, квантовое событие срабатывает в качестве триггера, «запуская» значительно более крупное событие (какое только и может наблюдаться на классическом уровне!). Обычно этот переход в квантовой механике называют коллапсом волновых функций или редукцией вектора состояний.

Назад Дальше