Газотурбинный двигатель имеет в 15–20 раз меньше соединений с кузовом, чем поршневой, и снимать его при обслуживании не требуется, а если вдруг окажется нужным, можно сделать это за час или два. Меньше поездов на профилактике — значит больше на линии. Чтобы осуществить один и тот же объем перевозок, потребуется в 1,15-1,2 раза меньше турбопоездов, нежели дизельных.
Правда, газотурбинный двигатель пока потребляет больше топлива, но зато он может работать на низких сортах. Газотурбинный двигатель имеет иные тяговые характеристики, нежели дизель — поэтому с его применением ненужными становятся ни электрическая постоянного тока, ни гидравлическая передачи к ведущим колесам, а вполне можно обойтись обычной механической. В итоге при существующих типах локомотивных двигателей газовая турбина является наиболее подходящей для высоких скоростей. При скорости 150–200 км/ч потребность в мощности, необходимой для передвижения собственно локомотива, резко увеличивается, поэтому легкая и мощная машина — газотурбовоз с механической передачей — приходится для таких случаев как нельзя более кстати.
Есть и сложности. Газотурбинная установка на локомотиве имеет более низкий к. п. д., чем дизель: ограниченная жаростойкость турбинных лопаток вынуждает лимитировать температуру газов. Увеличивается расход топлива при неполной загрузке. На самолете турбина работает с полной нагрузкой и при низкой температуре окружающего воздуха (минус 40–50 °C). Локомотив же работает с переменной нагрузкой и при температуре от минус 50 до плюс 40 °C. Тем не менее во многих странах мира усиленно работают под использованием газовой турбины на железной дороге. Это особенно относится к турбопоездам. По подсчетам специалистов моторвагонный состав, оборудованный серийно выпускаемой в нашей стране авиационной газовой турбиной мощностью 2550 л. с. и весом 600 кг, сможет развивать скорость до 200 км/ч. Над проектом турбопоезда работает Рижский вагоностроительный завод.
Во Франции испытывался недавно экспериментальный двухвагонный турбопоезд. На железнодорожном участке возле Орлеана он показал скорость, равную 231,8 км/ч. Основой его конструкции явился обычный серийный французский дизель-поезд тоже из двух вагонов — моторного и прицепного. В испытаниях определяли тяговые свойства газотурбинного двигателя при разных скоростях движения, аэродинамику, всасывание и выпуск воздуха на высоких скоростях, работу механической передачи, стабильность хода и многое другое. Преимущества в весе турбопоезда по сравнению с дизель-поездом бесспорны. Двухвальный двигатель и простейшая механическая передача весят только 1,2 т по сравнению с 10,5 т веса дизеля со ступенчатым редуктором. Итог — вдвое сниженные нагрузки от оси на рельсы. Авиационный серийный двигатель мощностью около 1500 л. с. размещен под полом прицепного вагона в звукоизолированном отсеке.
Англичане пока еще турбопоезда не построили, зато разработали его проект, но уже из восьми вагонов. Два двигателя мощностью по 1500 л. с. должны обеспечить движение поезда весом 250 т со скоростью до 250 км/ч.
Комфорт — условие необходимое
Когда мы летим в самолете со скоростью 600–800 км/ч, эта скорость почти не ощущается: нет ни толчков, ни вибраций. Точно такой же комфорт — и даже больший — должны дать пассажирам и железнодорожники. Конечно, комфортабельность — непременное условие для любого пассажирского поезда. Но для высоких скоростей это имеет особое значение. Без этого, во-первых, невозможно привлечь людей, а во-вторых, вагон, испытывающий тряску, толчки и вибрации на высоких скоростях, очень скоро выйдет из строя сам и разрушит к тому же рельсовый путь. А шум, возникающий при движении подобного рода, будет просто непереносим.
Борьба с шумом и представляет собой одну из важнейших задач, которую приходится решать конструкторам.
Когда вагон катится по рельсам с мелкими, почти не видными глазу неровностями, возникает шум, очень неприятно действующий на человека. Наиболее мощным источником шума является место контакта колеса с рельсом: колебания, вызываемые неровностями пути, переходят в звуковые волны. Чтобы подавлять шумы в месте их возникновения, применяют бесстыковой путь; длинные рельсовые пути укладывают на резиновые изоляторы. Если тщательно следить за состоянием путей, можно избавиться от неровностей, но полностью ликвидировать шум катящихся колес нельзя.
Шум возникает и в тележках, и в рычажной передаче тормоза, и в тяговосцепных устройствах. Чтобы его было меньше, в узлах соединения между кузовом и тележкой ставят эластичные элементы; воздуховоды включают в систему поглотителей шума; рычажные передачи устанавливают в пластмассовых направляющих, а тормозной цилиндр крепят к отдельной раме, изолированной от рамы вагона специальными прокладками.
Чтобы обеспечить спокойный ход локомотива при любых скоростях, в рессорной подвеске применяют значительное количество резиновых элементов, которые хорошо работают на сжатие и на сжатие со сдвигом. У многих серий тепловозов буксы соединяются с рамой через резиновые втулки, а применение резиновых амортизаторов уменьшает горизонтальные поперечные силы, действующие между колесом и рельсом.
Но полностью ликвидировать возникновение шума на месте все равно невозможно. Значит, остается только не допустить, чтобы шум из места своего возникновения «пробрался» внутрь вагона, куда у него есть два пути — по воздуху и через жесткие, вибрирующие элементы кузова. По каждому из них проходит примерно равное количество шума. И к первичному шуму добавляется тот, который вызывает идущая звуковая волна в местах соединений тележек с кузовом или в обшивке кузова. Волна, идущая по воздуху, тоже вызывает вторичные звуковые колебания, проникая через окна, двери, отверстия для кабелей и трубопроводов.
Открытые окна сводят на нет все меры по шумоизоляции: но при высоких скоростях открывать их недопустимо из соображений безопасности. В таких условиях наилучшей конструкцией является окно с двойными неподвижными стеклами. Кстати, такая конструкция неизбежно приводит к необходимости устройств для кондиционирования, которые широко применяются на скоростных поездах. В систему этих устройств входят приборы для отопления, охлаждения и — вентиляции.
Конструкторы стараются не только преградить доступ звуковым волнам внутрь кузова, но и сделать так, чтобы даже попавшие в пути звуки поглощались. Пол делают сплошным с усиленной изоляцией над тележками, а потолки в купе — перфорированными. Стены изолируют комбинированными материалами — волокнистыми для поглощения высокочастотных шумов и плотными для поглощения шумов низких частот.
Гладкие внутренние поверхности не поглощают, а наилучшим образом отражают звук, поэтому для отделки внутренних поверхностей купе стараются использовать упругие материалы, имитирующие кожу или ткань. Внутреннюю поверхность наружной обшивки кузова покрывают звукопоглощающим волокнистым веществом. И даже конструкция сидений для лучшей звукоизоляции изменена. Раньше основными их частями были деревянная рама, металлические пружины и конский волос. Теперь рама делается из металла, а стальные пружины сиденья и спинки закрыты матрацами из пористой резины или поролона, толщиной приблизительно 20 мм. Это тоже в какой-то степени понижает уровень шума в купе.
Исследования показали, что при увеличении скоростей до 200 км/ч из-за динамического воздействия воздуха на стены резко повышается уровень шума в купе, расположенных по концам вагона. Предупредительной мерой в таком случае является повышение жесткости конструкции кузова. Правда, в этом отношении существуют свои пределы. Для железных дорог проблема веса не играет, конечно, такой огромной роли, как в авиации — тем не менее нагрузка от оси на рельсы не должна превышать определенных пределов. Потому увеличивать как угодно толщину стен вагонов нельзя.
Во что же обходятся все меры шумоизоляции? Стоимость звукоизолирующих элементов составляет 2–4 % от полной стоимости вагона, а вес их — 1,5–3 % от веса вагона. Улучшение конструкции тележек с точки зрения звукоизоляции увеличивает ее стоимость всего лишь на несколько процентов.
Несправедливо было бы обеспечить комфорт только пассажирам. Для пассажира поездка это всего лишь несколько часов, для машиниста — постоянная работа. Он тоже должен быть избавлен от «шумового оформления». Для этой цели и на стенки кузова локомотива наносят звукопоглощающие материалы, а сам кузов разделяют на несколько помещений. Двигатели тепловозов крепятся к раме через резиновые прокладки, для них стараются использовать надежные глушители, а все источники шума поместить в одном машинном отделении.
Постоянно поддерживать в вагонах оптимальную температуру — задача тоже не из простых, но это необходимая составная часть в создании комфортабельных условий путешествия. Есть разные способы отопления вагонов. Источником тепла может быть пар от локомотива или специального котла. Применяется также электрическое отопление, а в дизель-поездах — автономное, когда каждый вагон оборудуется собственной отопительной установкой.
Но важно не только получить тепло, важно его и сохранить. Конструкторы стараются применять такие материалы, которые пригодны одновременно для звуко- и теплоизоляции. Асбест или стекловолокно защищает вагон как от шума, так и от потерь тепла. Развитие химии добавляет к материалам, использующимся для этой цели, пенополиуретан или вспененный полистирол. А для защиты летом от жары крышу вагонов красят светлой краской (белой, серебристой), чтобы повысить отражающую способность.
Ученые пытаются ввести слово «комфорт» в разряд строго научных терминов. Для этой цели введено понятие «условного комфорта». Оно обозначает то время, которое пассажир может провести в вагоне без усталости. Сейчас оно равно 6 ч, в будущем должно подняться до 10 ч.
Важным условием комфорта является освещенность. Уровень ее растет. Норма освещенности на многих дорогах повышена по сравнению с прошлыми годами почти в 2 раза. Конечно, ради этого тоже приходится идти на дополнительные расходы: повышать номинальную мощность системы электроснабжения вагона, использовать люминесцентные лампы, которые дают более высокую освещенность и более равномерное распределение света, чем лампы накаливания. Подбирая в соответствии с лампами цвета материалов для отделки внутреннего помещения вагона, инженеры добиваются мягкого и ровного освещения, не слепящего, не режущего глаза и в то же время такого, при котором не возникает затемненных участков.
Задача железнодорожников — сделать так, чтобы человек, имея возможность лететь, все же выбрал бы поезд. И, разумеется, конструкция и форма кресел имеют для человека, которому предстоит сделать выбор, большое значение. О деревянных скамейках, конечно, не может быть и речи. Кресло должно быть мягким, легким, небольшим, оставаться удобным для любого человека, кто бы в него ни погрузился — от великана до карлика, не изнашиваться слишком быстро и, наконец, при толчках и ударах — а такое в пути всегда возможно — защитить пассажиров. Всем этим качествам должно отвечать и кресло для самолетов — поэтому не удивительно, что подход к конструированию и тех и других одинаков.
Этой проблеме придается настолько большое значение, что в Японии и США, например, перед тем как конструировать кресла для скоростных поездов, провели целый ряд антропометрических исследований мужчин и женщин, чтобы получить средние показатели роста, веса, ширины бедер и плеч, длины рук и ног. Очень важно учитывать не только первоначальную форму кресла, но и возможность ее изменения. Человек не может долго занимать одно положение, и кресло должно приспосабливаться к любому. Исследования показали, что у сидящего больше всего устает та часть тела, которую поддерживает поясничный позвонок. Спиральная пружина в спинке кресла, точное соответствие контура подушки для спины поясничной кривой позвоночника — все это дает возможность пассажиру принимать большее число расслабленных положений. В некоторых скоростных поездах спинка кресла наклонена более обычного для того, чтобы основная часть тяжести приходилась на спину человека.
Возможность любоваться быстро меняющимся за окном пейзажем тоже до какой-то степени условие комфорта. Не во всяком вагоне положение пассажира позволяет это сделать. Конструкторы хотят предоставить такую возможность каждому и с этой целью в состав скоростных поездов включают вагоны для обозрения местности. Такой вагон входит, например, в трансъевропейский экспресс «Рейнгольд», курсирующий по железным дорогам Западной Европы с максимальной скоростью 160 км/ч.
С обоих концов вагон имеет обычную высоту, но посередине его помещен стеклянный купол. Здесь высота увеличена и по всей длине под куполом вагон имеет два этажа. Человек, находящийся здесь, прекрасно видит все окрестности. Кресла второго этажа могут поворачиваться на 180° и фиксироваться в любом положении.
Двухэтажные и двухъярусные вагоны есть и во многих других странах — Венгрии, ГДР, США, Франции. В нашей стране ленинградский завод им. И. Егорова выпустил вагон со стеклянным куполом, который испытывался и показал хорошие результаты. Он оснащен двумя установками для кондиционирования воздуха холодопроизводительностью 25 тыс. ккал/ч каждая. На первом этаже расположены семь четырехместных спальных купе, на втором — под прозрачным куполом — 28 сидячих мест. В состав вагона входят душевая и буфет.
Железная дорога едва ли не на сто лет старше авиации. И тем не менее инженеры сухопутного транспорта с повышением скоростей вынуждены были «идти на выучку» к самолетостроителям. Так появились тонколистовые цельнометаллические несущие кузова вагонов и автомобилей через 15–20 лет после того, как задача создания этих конструкций была решена авиационными инженерами.
Использование новых конструктивных принципов — один метод снижения веса. Второй — использование более легких материалов, в первую очередь алюминиевых сплавов. Все виды транспорта потребляют 23 % мирового производства алюминия. На долю железных дорог приходится всего 2 %. Но, как ни странно, пальму первенства держит не авиация (всего 7 %), а автомобилестроение и городской транспорт — 13 %. Судостроители, правда, потребляют еще меньше, чем железнодорожники — всего 1 % мирового производства алюминия.
В последнее время положение меняется. Алюминий находит все большее и большее применение в вагоностроении. Сплавы из этого металла почти не уступают по прочности стальным, будучи в то же время почти в 3 раза легче. Алюминий гораздо лучше противостоит коррозии, чем сталь, поэтому затраты на эксплуатацию, ремонт, окраску вагонов становятся гораздо меньше.
На Калининском вагоностроительном заводе создан пассажирский вагон для движения со скоростью до 160 км/ч с кузовом из алюминиевого сплава. Он весит 36 т — на 8 т меньше вагонов старых конструкций, а длина его на 2 м больше. Вагон имеет только один тамбур. Пассажирам от этого гораздо просторней. Рама его сделана из низколегированных сталей, а стены и крыша — из алюминиевых сплавов. И по условиям комфортабельности он находится на уровне современных требований. Установка для кондиционирования воздуха, электрические печи и калорифер, горячее и холодное водоснабжение. В конструкции применены не только алюминий и сталь, но и стеклопластики. Наружные двери вагона, рамы окон, полы туалетных помещений, ящики для постельного белья, стены и перегородки внутри вагонов сделаны из трехслойных плит с пенопластовым наполнителем. Эти плиты обладают хорошей звуко- и теплоизоляцией, имеют малый объемный вес при достаточной прочности. Применение перегородок из трехслойных плит позволяет снизить вес тары пассажирского вагона на 1,5–2 т.
Конечно, наиболее ответственные детали, подвергающиеся большим силовым нагрузкам, из алюминиевых сплавов не сделаешь. Высококачественные стали позволяют изготавливать очень прочные детали сравнительно небольшого веса. Тонкие листы нержавеющей стали, которыми обшивают внутренние части вагонов, значительно тоньше листов из обычных сталей. Здесь, правда, может возникнуть вопрос: а не уменьшится ли прочность вагонов. Нет, просто снизятся запасы на коррозию, поскольку нержавеющая сталь обладает высокой антикоррозийностью.