Проблема создания сверхскоростного поезда является одной из сложнейших, какие стояли когда-либо перед инженерами железнодорожного транспорта. Свой собственный опыт придется коренным образом пересмотреть, привлечь на помощь опыт инженеров других отраслей промышленности, в первую очередь, авиации. Технические средства, рождающиеся на стыке разных отраслей промышленности, приводят к поразительным достижениям. Сверхскоростной поезд — одно из них.
Законы аэродинамики выступают как будто в роли врагов сверхскоростного поезда. Но нет худа без добра. Воздушное сопротивление препятствует движению поезда — но оно же может оказаться и полезным. Колоссальное давление воздуха на стенки поезда приведет к тому, что он будет меньше колебаться в поперечном направлении. Уменьшится виляние. Воздух превратится как бы в плотную оболочку, гасящую колебания, прижимающую поезд к рельсам. Тут может возникнуть новая отрасль науки — аэродинамика скоростных поездов. Так технические проблемы приводят к возникновению научных дисциплин, а те, в свою очередь, способствуют развитию техники.
Путь надо готовить
Если отдельные паровозы-рекордсмены могли в старину двигаться со сверхвысокими скоростями, то путь на подобную резвость никак не был рассчитан. Вот поэтому-то сейчас при обдумывании проблем скоростного движения инженеры обращают внимание на подготовку пути не меньшее (если не большее), чем на конструкцию подвижного состава. Прежде всего речь идет об улучшении плана трассы. Эта работа заключается в увеличении радиусов кривых и спрямлении отдельных участков. Важность ее легко понять из таких цифр: в нашей стране на каждые 100 км сети приходится в среднем 8-16 участков для грузовых и 20–40 участков для пассажирских поездов, где из-за кривых приходится снижать скорость. При радиусе 600 м скорость не может быть больше 115 км/ч, при радиусе 800 м — больше 130 км/ч. Вот поэтому улучшение трассы в плане сыграет очень большую роль при подготовке к сверхскоростному движению. Американцы подсчитали: если можно выиграть минуту в пути, затратив от 46 тыс. до 115 тыс. долларов, на эти расходы целесообразно идти. Поэтому при спрямлении дорог они прибегают к очень большим капитальным работам, вплоть до постройки тоннелей, виадуков, изменения русел рек.
Чем больше скорость движения, тем больше действующие на путь силы. Вот почему при подготовке к сверхскоростному движению стараются усилить путь, применяя более тяжелые рельсы. С повышением веса рельс — возрастает их несущая способность, срок службы, стабильность пути. На линиях, где поезда ходят со скоростью 120 км/ч и выше, применяют рельсы, весящие не менее 50 кг/пог. м. В США, где скоростные поезда ведут тепловозы с осевой нагрузкой 25 т, применяются рельсы весом 60–65 кг/пог. м. На наших дорогах при скоростях от 101 до 120 км/ч укладывают рельсы типа Р50 и при скоростях более 120 км/ч — рельсы типа Р65.
Чем больше неровностей на рельсах, тем меньше комфорт для пассажиров. Удары и толчки неизбежны на стыках рельс, поэтому инженеры стараются на скоростных линиях укладывать длинные сварные рельсовые плети. Бесстыковой путь получает очень большое распространение. И дело не только в сокращении количества рельсовых стыков. Сама колея становится более стабильной в плане и профиле.
Какие только профили рельсов ни применялись в те далекие времена, когда появились железные дороги! После многих опытов наш современный профиль рельса — с подошвой, шейкой и головкой — был признан наилучшим. Не изменился он и с появлением высокоскоростных поездов, только чуть-чуть модернизировался. На линии Новая Токайдо головка сопрягается с шейкой по кривой большего радиуса, чем обычно. Точно так же новые рельсы, которые появляются в Западной Европе, имеют более пологие сопряжения шейки с головкой и подошвой. Все это уменьшает опасную концентрацию напряжений.
Во времена первых железных дорог никто не мог поверить, что деревянные шпалы способны выдерживать ту громадную нагрузку, которую создает движущийся поезд. Под рельсы сперва подкладывали камни, которые даже не соединяли колею, потом додумались до каменных шпал, укладка которых стоила чрезвычайно дорого, наконец, пришла очередь деревянных. Интересно, что не с изобретением паровоза и не с подбором профиля рельс, а с появлением деревянной шпалы железнодорожный транспорт сделал большой рывок. Ведь строительство дорог после этого резко подешевело. С появлением скоростных поездов деревянная шпала не изменила своей конструкции. Изменилось число их на километр пути. Специалисты считают, что увеличение этого числа, особенно на кривых, усиливает путь, следовательно, является одной из мер при подготовке к скоростному движению. На дорогах с тяжелыми рельсами укладывают 1840–2000 шпал на километр.
Если вместо деревянных применяют железобетонные шпалы, получающие в последнее время все больше распространение, путь становится более жестким. Зато движение — более плавным. В связи с повышенной жесткостью пути с железобетонными шпалами между рельсом и шпалой на линии Новая Токайдо уложены резиновые прокладки. В систему соединения рельс — шпала должны входить и другие упругие элементы, снижающие жесткость основания. Для этой цели применяются упругие сопряжения. Вот один из вариантов на линии Новая Токайдо (рис. 5).
Рис. 6. Вагон с линейным двигателем: 1 — реактивный рельс; 2 — группа тележки (колеса диаметром 965 мм);3 — линейный асинхронный двигатель; 4 — генератор переменного тока; 5 — редуктор; 6 — газовая турбина.
Первичная обмотка (статора) вытянута и закреплена неподвижно. При подаче к ней переменного тока будет наведен ток и во вторичной обмотке. Между тем возникает сила тяги, и плоский ротор двинется вдоль плоского статора. А можно и наоборот — статор вдоль ротора. Принцип линейного двигателя известен давно. Его предлагал еще в конце прошлого века известный русский изобретатель Доливо-Добровольский. Но широкая работа над его применением началась только в последние годы. Как бы ни было хорошо техническое средство, если в нем нет массовой потребности, за пределы лабораторий ему не выйти. Потребность в скоростном наземном транспорте, ограниченность обычных железных дорог в смысле повышения скоростей — все это распахнуло перед линейным двигателем двери лабораторий. В чем же его преимущества? Их много.
Для того, чтобы возникло тяговое усилие, вовсе не обязательно иметь поверхность контакта между подвижным составом и дорогой. Поэтому экипаж с таким двигателем можно использовать для любого подвешивания, в том числе и на воздушной подушке.
Когда ротор вращается внутри статора, скорость его вращения ограничена, иначе он разорвется под действием центробежных сил. В линейном двигателе движение поступательное, поэтому скорость может быть достаточно большой. Это достоинство особенно ценно для скоростного транспорта.
Нет поверхностей контакта и внутри самого двигателя; стало быть нет изнашивающихся деталей вроде втулок, шестерен и тому подобное.
Двигатель бесшумен, не создает воздушного потока — значит, пыль не будет лететь в окна. К тому же он работает без вибраций.
Движущийся вагон весит сравнительно немного. Поэтому возможны высокие ускорения и резкие ступени передач. Это очень важно для городского и пригородного транспорта.
К достоинствам линейного двигателя относится и ненапряженный температурный режим его работы. Вагон-статор скользит вдоль шины-ротора, и участки шины, где происходит взаимодействие, не успевают нагреваться. Нагревается только статор, а ротор его даже охлаждает.
Экипажу с линейным двигателем очень легко осуществлять электрическое торможение, а рекуперируемую энергию возвращать в сеть.
Достоинств очень много. Но есть и недостатки.
Между движущимся и неподвижным элементами конструкции необходимо иметь зазор больший, чем в обычном асинхронном двигателе, что трудно, так как сила притяжения между ними в 3-10 раз превышает силу тяги. Этим объясняется отчасти сравнительно низкий к. п. д. линейного двигателя (0,88 с алюминиевым ротором и 0,70 со стальным против 0,92 у обычного тягового электродвигателя постоянного тока).
Длинный элемент, вытянутый вдоль дороги большого протяжения, вещь очень не дешевая. Размеры двигателя определяются тяговым усилием, поэтому небольшой двигатель на малых скоростях не может развить большого тягового усилия.
Достоинств тем не менее значительно больше, чем недостатков. Поэтому в нашей стране, в Англии и в США проводятся исследования линейных двигателей в качестве источника энергии для высокоскоростного наземного транспорта.
Опытные экземпляры двухобмоточного, трехскоростного линейного двигателя сделаны на Киевском заводе электротранспорта имени Ф. Э. Дзержинского. Используя одну обмотку, можно получить максимальную скорость, используя вторую — 2/3 и 1/3 максимальной скорости при разгоне, торможении, прохождении кривых малых радиусов и стрелок. Статор (пакет из листовой электротехнической стали) отделяет от ротора (ферромагнитного рельса) воздушный зазор в 3–4 мм. Рельс (полоса из конструкционной стали прямоугольного сечения) закреплен на несущей балке. Опытный вагон оснащен четырьмя скоростными двигателями, имеющими гибкое соединение с ходовой тележкой. Каждый двигатель состоит из двух статоров, расположенных по обе стороны рельса и связанных между собой общей тележкой.