Как известно, воздух представляет собой смесь нескольких газов. Воздушную оболочку земного шара мы называем атмосферой; она простирается приблизительно до высоты 2000 километров. Но, строго говоря, верхней границы атмосферы не существует, так как с высотой воздух становится все разреженнее и постепенно атмосфера сменяется безвоздушным пространством[5].
Воздух кажется нам невесомым, но это неверно. У поверхности земли, на уровне моря, один кубический метр воздуха весит приблизительно 1,3 килограмма (подсчитайте вес воздуха в вашей комнате и вы убедитесь, что воздух — довольно тяжелый газ). На высоте 5 километров один кубический метр воздуха весит уже 0,7 килограмма, на высоте 10 километров — только 0,4 килограмма и т. д.
Поскольку воздух имеет вес, он давит на тела, на всякую площадку, с которой соприкасается (подобно тому как вода давит на погруженное в нее тело со всех сторон).
Атмосферное давление можно измерить прибором, который называется барометром[6]. В простейшем виде он изображен на рис. 5.
Рис. 5. Ртутный барометр. Величина столбика ртути (Р) в трубке показывает величину давления воздуха (В) на поверхность ртути в чашке.
Идея прибора состоит в том, что давление воздуха уравновешивается столбом ртути в трубке, в которой воздуха нет, то есть над уровнем ртути в трубке пустота.
Высота столба ртути на уровне моря бывает равна в среднем 760 миллиметрам.
Когда атмосферное давление увеличивается, часть ртути из чашки вдавливается в трубку и уровень ртути в трубке повышается. При уменьшении атмосферного давления происходит обратное. Измеряя высоту столба ртути по шкале, можно всегда узнать величину атмосферного давления в миллиметрах ртутного столба.
Если площадь поперечного сечения трубки барометра равна одному квадратному сантиметру (1 см2), то вес ртутного столба, а значит и давление воздуха, равен приблизительно 1,03 килограмма. Следовательно, на уровне моря каждый квадратный сантиметр поверхности тела (сверху, снизу, с боков) испытывает давление воздуха, равное 1,03 килограмма, а каждый квадратный метр — давление в 10 000 раз большее, т. е. 10 300 килограммов.
Мы не замечаем этого громадного давления по той причине, что давление воздуха (как и жидкости) передается во все стороны с одинаковой силой. Поэтому всякое тело, находящееся в воздухе, испытывает давление со всех сторон (а также изнутри, когда воздух проникает в поры тела).
Атмосферное давление можно обнаружить очень простым опытом. Наполните стакан водой до краев, прикройте его листком плотной бумаги, затем, придерживая листок ладонью, опрокиньте стакан и отнимите руку: листок как бы при липнет к краям стакана, и вода не выльется. Сила давления воздуха, действующая на листок снизу, будет больше силы давления воды, то есть ее веса.
При изучении аэродинамических сил, действующих на самолет в полете, приходится измерять не атмосферное давление, а разность между двумя давлениями, из которых одно, скажем, равно атмосферному, а другое больше или меньше атмосферного. Для этой цели служит особый прибор — манометр. Принцип его действия такой же, как и барометра. Манометр изображен на рис. 6.
Рис. 6. Ртутный манометр. Разность уровней (Д) показывает разность давлений воздуха (В) на поверхность ртути (Р) в коленах трубки.
На поверхность ртути в обоих коленах трубки действует одинаковое давление — атмосферное; поэтому ртуть стоит в них на одном уровне. Если же одно колено, скажем, левое, соединить с пространством, в котором давление меньше атмосферного, то уровень ртути в этом колене повысится.
Столбик ртути между уровнями ртути в коленах трубки и покажет разность давлений в миллиметрах ртутного столба.
Аэродинамические силы, действующие на тело при его движении в воздухе, зависят только от его скорости относительно воздуха. Поэтому движется ли тело, а воз-дух неподвижен или, наоборот, тело неподвижно, а движется воздух, — суть дела не меняется. Как в первом, так и во втором случае мы вправе говорить о воздушном потоке, набегающем на тело. Поэтому можно представить, что самолет, летящий, например, со скоростью 200 километров в час (рис. 7, а), неподвижен, а на него набегает поток воздуха, с той же скоростью 200 километров в час (рис. 7, б)[7].
Рис. 7. Скорость самолета относительно окружающего его воздуха можно представить как скорость воздуха, набегающего на самолет.
Следовательно, явления, возникающие при движении тела в воздухе, можно изучать двумя способами: или двигая тело в неподвижном воздухе, или обдувая воздухом неподвижное тело.
Сейчас применяются оба способа, но второй более удобен и им чаще пользуются.
Раньше некоторые ученые считали второй способ ошибочным, но Н. Е. Жуковский показал его правильность. Этот способ очень удобен при опытах в так называемых аэродинамических трубах.
Аэродинамической трубой называется сооружение, которое позволяет создавать искусственный поток воздуха. Скорость воздушного потока, в зависимости от конструкции трубы, может быть очень большой. Простейшая аэродинамическая труба изображена на рис. 8.
Рис. 8. Схема аэродинамической трубы: 1 — решетка, спрямляющая воздушный поток, 2 — рабочая часть трубы, 3 — вентилятор, 4 — электромотор.
Вот как она устроена и работает. Оба конца трубы открыты, и в одном из них установлен большой вентилятор, вращаемый электромотором. При работе вентилятора в трубе создается воздушный поток. В самой узкой — рабочей— части трубы устанавливают для испытания модель самолета или крыла. Если воздушный поток «подкрасить» дымом, то через окно в трубе можно наблюдать, как воздух обтекает модель, и даже сфотографировать картину обтекания. С помощью специальных приборов можно измерять силы, возникающие при действии воздушного потока на модель.
В аэродинамической трубе, если вентилятор вращается равномерно, воздушный поток получается, как говорят, установившимся.
Если самолет летит с постоянной скоростью, то полет тоже называют установившимся.
ДВА ЗАКОНА АЭРОДИНАМИКИ
Течение воздуха и силы, возникающие при действии воздушного потока на тела, изучает наука аэродинамика. Это родная сестра гидродинамики, изучающей, течение жидкостей («гидр» — вода). Важнейшие законы гидродинамики были сформулированы учеными Эйлером и Д. Бернулли — современниками Ломоносова. С развитием авиации выяснилось, что эти законы в общем справедливы и для воздуха, то есть являются и законами аэродинамики. Они вытекают из основных законов естествознания: сохраняемости массы и энергии.
Эйлер сформулировал закон неразрывности течения жидкости.
Посмотрите на рис. 9, а.
Рис. 9. С уменьшением площади сечения струи скорость течения воды или воздуха возрастает, а давление падает.
На нем изображена схема прибора, состоящего из открытого резервуара и соединенной с ним трубки, которая имеет разные сечения. Если открыть оба крана так, чтобы уровень воды в резервуаре оставался неизменным, то течение воды по трубке будет установившимся: в любом месте трубки вода ни накапливается, ни убывает (иначе где-то образовался бы разрыв течения). Поэтому за одну секунду из трубки вытекает столько же воды, сколько в нее притекает из резервуара. Значит, через разные сечения трубки (А, Б и В) за одну секунду протекает одинаковая масса воды. А это может быть, очевидно, только в том случае, если через эти сечения вода течет с различной скоростью. Чем меньше сечение, тем больше скорость воды. Иначе за одну секунду через узкое сечение «не успеет» пройти такая же масса воды, какая проходит за одну секунду через широкое сечение.
В этом и состоит закон неразрывности течения жидкости. В справедливости его можно убедиться, наблюдая течение реки. Там, где ее русло суживается и мелеет, вода течет всегда быстрее.
Этот закон справедлив и для течения воздуха, когда скорость не превышает 400–500 км/час и воздух можно считать несжимаемым.
Теперь познакомимся со вторым важнейшим законом аэрогидродинамики, который был сформулирован ученым Бернулли. Воспользуемся опять же прибором, который изображен на рис. 9, а.
Вы видите, что к трубке переменного сечения присоединены вертикальные трубочки с открытыми концами. Эти трубочки играют роль манометров. Когда краны закрыты и вода не течет по трубке, то в манометрах она стоит на том же уровне, что и в резервуаре (как во всяких сообщающихся сосудах). Но как только вода потечет по трубке, уровень воды в манометрах понизится.
Это доказывает, что если вода течет, то давление ее на стенки трубки меньше, чем когда она находится в покое. Кроме того, оказывается, что уровень воды больше всего понизится в том манометре, который присоединен к самому узкому сечению, а меньше всего — в манометре, присоединенном к самому широкому сечению.
Таким образом, когда скорость воды, то есть ее кинетическая энергия, увеличивается, давление в струе (потенциальная энергия) уменьшается[8]. В этом и заключается смысл закона Бернулли.
То же самое можно наблюдать и при течении воздуха по трубке переменного сечения (рис. 9, б). Манометры и здесь покажут, что давление уменьшается при сужении струи, то есть при увеличении скорости течения воздуха.
В справедливости закона Бернулли легко убедиться и на более простом опыте.
Возьмите два листа писчей бумаги, держа их параллельно (рис. 10, а), дуньте в промежуток между ними.
Рис. 10. Если дуть в промежуток между двумя листами бумаги, то они сблизятся, так как давление в струе меньше, чем с внешних сторон листов.
Казалось бы, что струя воздуха подействует как клин и поэтому листы разойдутся. Произойдет же как раз обратное: листы сблизятся (рис. 10, б). Дело в том, что с внешних сторон давление воздуха на листы равно атмосферному, в промежутке же между ними — в струе воздуха — давление будет немного меньше атмосферного; разность давлений и заставляет листы сближаться.
Теперь, когда вы познакомились с важнейшими законами аэродинамики, вы поймете возникновение аэродинамических сил и, в частности, подъемной силы крыла, поддерживающей самолет в воздухе.
АЭРОДИНАМИЧЕСКИЕ СИЛЫ
На самолет в полете действуют аэродинамические силы. Покажем сначала на простых примерах, как они возникают.
Прежде всего, что такое аэродинамическая сила?
Когда при полном безветрии вы быстро едете на велосипеде, встречный воздух стремится затормозить ваше движение. А если вы стоите неподвижно и на вас дует сильный ветер, то воздух стремится сдвинуть вас с места. В обоих случаях это воздействие воздушного потока на тело и называют аэродинамической силой, или силой сопротивления воздуха.
Аэродинамическая сила получается тем большей, чем больше поперечные размеры тела и плотность воздуха, и особенно сильно она возрастает с увеличением скорости движения (или скорости потока). Кроме того, величина аэродинамической силы зависит еще от формы тела и от положения его в воздушном потоке. То и другое имеет огромное значение для полета.
Как же возникает аэродинамическая сила?
На рис. 11, а изображена схема обтекания воздухом круглой пластины (диска), поставленной перпендикулярно к потоку. Посмотрите на нее внимательно.
Рис. 11. Возникновение аэродинамической силы Р при симметричном обтекании: а) пластины и б) хорошо обтекаемого тела.
Струйки воздуха давят на пластину, так как она является для них препятствием. Перед пластиной получается повышенное давление (обозначено знаками плюс).
Огибая пластину, струйки сжимаются и поэтому, согласно закону неразрывности, скорость их возрастает. В силу инерции они стремятся двигаться прямолинейно и отрываются от пластины. По этой причине позади нее получается разрежение, то есть пониженное давление воздуха (обозначено знаками минус). Некоторые струйки врываются в это разреженное пространство и образуют вихри, которые потом постепенно исчезают.
Таким образом, впереди пластины давление воздуха повышено, а позади нее понижено. К чему это ведет?
Представьте себе, что вы давите на полуоткрытую дверь, а ваш товарищ давит на нее с другой стороны. Если вы сильнее, то под действием разности давлений дверь откроется в сторону вашего товарища. Так и здесь. Разность давлений впереди и позади пластины создает силу, направленную в сторону меньшего давления (мы будем обозначать ее русской буквой Р)[9]. Если пластина неподвижна, то эта аэродинамическая сила будет стремиться сорвать пластину и унести ее. Если же пластина движется, то эта сила будет тормозить движение.
Сопротивление воздуха, как было сказано, сильно зависит еще от формы тела. Какая же форма будет наиболее выгодной?
Снабдим нашу круглую пластину спереди тупой конусообразной наставкой, а сзади — более заостренным конусом (рис. 11, б). При такой форме срыв струй отсутствует, вихрей позади тела почти нет, разность давлений воздуха впереди и позади тела незначительна. По сравнению с пластиной сопротивление такого тела примерно в 25 раз меньше, и создается оно главным образом лишь трением воздуха о его поверхность.
При такой форме воздушный поток почти не тормозится телом, он течет вдоль его гладких боков и хорошо обтекает заостренную заднюю часть. Поэтому такие формы получили название хорошо обтекаемых.
Мы познакомились с обтеканием тел симметричной формы, когда воздух течет параллельно оси симметрии тела[10]. В таких случаях воздух обтекает тело тоже симметрично и разность давлений получается только впереди и позади тела, а не по бокам его. Эта разность давлений, а также трение воздуха о поверхность тела и создают силу, направленную прямо против движения, как говорят, «в лоб» (рис. 11). Поэтому в таких случаях аэродинамическую силу называют силой лобового сопротивления.
Таким образом, лобовое сопротивление складывается из сопротивления давления и сопротивления трения.
Вот как возникает сопротивление трения.
Всем известно поверхностное трение между твердыми телами. Существует еще внутреннее трение между соседними слоями жидкости или газа, называемое вязкостью. Например, если опустить в воду палец, а затем вынуть его, то к нему прилипнет немного воды. Но если проделать то же самое с маслом или глицерином, то к пальцу прилипнет много жидкости — тем больше, чем больше ее вязкость.
Вязкость воздуха наблюдать труднее. Однако известно, что через форточку, затянутую марлей, воздух проходит заметно хуже, чем без марли. Это в значительной мере объясняется вязкостью воздуха.
Когда воздушный поток обтекает тело, воздух непосредственно около самого тела не скользит по его поверхности, а прилипает к ней. Прилипший тончайший слой тормозит движение соседнего, этот — следующего и т. д., и лишь на некотором расстоянии от поверхности тела это явление прекращается. Слой, в котором проявляются силы внутреннего трения, называют пограничным (он граничит с поверхностью тела).
Чтобы уменьшить силы внутреннего трения в пограничном слое, крыльям и фюзеляжу самолета придают хорошо обтекаемую форму и полируют их поверхность.
Итак, лобовая аэродинамическая сила только тормозит движение тела. Посмотрим теперь, как возникает сила, нужная для полета.