Настольная игра «Футбол на бумаге» - Виталий Морозков 2 стр.


2). Первый ход делается из центра поля. В ФУТБОЛЕ НА БУМАГЕ существует пять принципиально разных вариантов первого хода (рис. 2).

Остальные три варианта всего лишь отражения. Т.о. первый ход можно сделать из центра поля в любое из восьми пустых пересечений. Встав в пустое пересечение, игрок должен в нём остановиться (он сделал свой ход), а данное пустое пересечение превращается в занятое и из него другой игрок делает свой ход. Очередной ход совершается из последнего занятого пересечения. Делая свой ход и попав в занятое пересечение, игрок должен из него сходить («дать пас») и так делать до тех пор, пока не попадёт в пустое пересечение, в котором должен остановиться.

3). Линия хода называется маршрутом. Ходить по пройденным маршрутам запрещается. Границы поля считаются пройденными маршрутами.

4). Для победы в партии необходимо «забить гол» в ворота противника, т.е. встать в пересечение, находящееся в его воротах (игрок также проигрывает, если «забивает гол» в свои ворота – «автогол»). На рисунке 3-1 приведён пример поражения Верхних ворот (В) забиванием гола.

Также партию проигрывает игрок, оказавшийся в занятом пересечении из которого невозможно сделать ход – «попавший в тупик». На рисунке 3-2 приведён пример такого поражения.

Естественных ничьих в ФУТБОЛЕ НА БУМАГЕ не бывает, возможна только ничья по договорённости сторон.

ФУТБОЛЬНАЯ НОТАЦИЯ

Для записи футбольных конструкций, ходов и партий используется специальная футбольная нотация: аналитическая и графическая.

Аналитическая нотация (АН).

Вертикальные пересечения обозначаются латинскими буквами от «a» до «g», а горизонтальные – цифрами от 1 до 11. Т.е. в футбольной «системе координат» каждое пересечение поля определяется буквой и цифрой. На рисунке 4 показаны координаты всех пересечений поля.

Красным цветом обозначены нечётные пересечения, чёрнымчётные. Если игроки строго соблюдают правила и партия доигрывается до победного конца – маршрут последнего хода всегда заканчивается в красном пересечении. Доказательство этого утверждения, а также определение чётных и нечётных пересечений даётся во второй главе книги – «Математика ФУТБОЛА НА БУМАГЕ».

Графическая нотация (ГН) – это рисунок маршрута хода.

Для наглядности можно показать ход, записанный с помощью графической и аналитической нотации. Из конструкции, показанной на рисунке 5-1, делается следующий ход: f8-g7-f6 (он показан на рисунке 5-2).

При записи ходов и партий используются следующие сокращения:

В – Верхний игрок, Верхние ворота (сторона, играющая за Верхние ворота);

Н – Нижний игрок, Нижние ворота (сторона, играющая за Нижние ворота).

Также используется запись следующего вида: (В;Н) или (Н;В).

Пример: запись (В;Н) означает, что первый ход из данной конструкции (и следовательно все нечётные ходы) делает Верхний игрок (В); а Нижний игрок (Н) соответственно делает второй ход (и следовательно все чётные ходы).

ГН – графическая нотация;

АН – аналитическая нотация;

!! – очень сильный ход;

! – сильный ход;

?? – очень слабый ход;

? – слабый ход;

act – активный ход;

pas – пассивный ход;

ку2 – использование стратегического приёма защита «ку-ку» (метод провокаций);

mpk – использование стратегического приёма «эмпэкашка» (метод плотных конструкций);

БП – безвыходное положение;

ЧВ(В), ЧВ(Н) – чётный выход в пользу Верхнего (В) или Нижнего игрока (Н);

Х – конец партии.

Глава 2 МАТЕМАТИКА ФУТБОЛА НА БУМАГЕ

Прежде чем перейти к изучению математических особенностей игры необходимо ввести определение размеров футбольного поля.

Размеры симметричного футбольного поля – это числовая совокупность вида (n1;n2;n3), где n1, n2, n3 – это:

Таким образом, наше футбольное поле имеет размеры (2;6;8).

1). Дано: симметричное футбольное поле размера (n1;n2;n3).

Определить: количество незанятых пересечений – N.

Решение: из рисунка 6 очевидно, что: N=2(n1-1)+(n2-1)(n3-1)-1

для нашего футбольного поля: N=2(2-1)+(6-1)(8-1)-1=36

2). Дано: симметричное футбольное поле размера (n1;n2;n3).

Доказать: на данном поле всегда чётное количество незанятых пересечений.

Доказательство: т.к. поле симметрично, то очевидно, что n1, n2, n3 – всегда являются чётными числами. Введём обозначения: Н – нечётное число; Ч – чётное число. Тогда:

Из формулы определения количества пустых пересечений следует:

N=Ч(Ч-Н)+(Ч-Н)(Ч-Н)-Н=ЧН+НН-Н=Ч+Н-Н=Н-Н=Ч

Таким образом, N всегда.

3). Дано: диаграмма с изображением сыгранной партии или части партии.

Определить: сколько было сделано ходов.

Решение: т.к. игрок ходит до тех пор пока маршрут хода не попадёт в пустое пересечение – очевидно, что, подсчитав количество пересечений, превратившихся из пустых в занятые, мы определим и количество совершённых ходов.

На рисунке 7-1 дана диаграмма сыгранной партии, а на рисунке 7-2 показаны «превратившиеся» пересечения (они обозначены красным цветом).

Обозначим количество «превратившихся» пересечений через P. Из рисунка 7-2 очевидно, что: Р=33-1=8

Таким образом, в партии было сделано 8 ходов.

4). Дано: диаграмма с изображением сыгранной партии или части партии.

Доказать: 1. количество рёбер, исходящих из центра поля и последнего занятого пересечения всегда нечётно;

2. количество рёбер, исходящих из любого другого занятого пересечения всегда чётно.

Ребро – отрезок, соединяющий два занятых пересечения.

Доказательство:

1. первый ход делается из центра поля (например d6-d7). Таким образом, после первого хода из центра поля исходит одно ребро. При дальнейшей игре «встав» в центр поля игрок должен от него «оттолкнуться».

Обозначим количество рёбер, исходящих из центра поля, через С. Тогда очевидно, что: С=1+2+…+2=Н+Ч+…+Ч=Н+Ч=Н

Максимальное количество рёбер, исходящих из центра поля, равно 7 (после трёх прохождений через центр, на четвёртом игрок попадает в тупик).

Очевидно, что количество рёбер, исходящих из последнего занятого пересечения равно 1, а следовательно нечётно.

2. Пересечения не являющиеся ни последними, ни центром поля сами были последними, но потом из них делали ход, т.е. количество рёбер, исходящих из данных пересечений, становилось равным 2. При дальнейшей игре «встав» в данное пересечение игрок должен от него «оттолкнуться». Обозначим количество рёбер, исходящих из такого пересечения (которое не является ни последним, ни центром поля), через S. Тогда очевидно, что:

S=2+2+…+2=Ч+Ч+…+Ч=Ч

На рисунке 8-1 приведён пример конструкции. Из данного положения ходят Нижние ворота (Н), хотя для них нет выхода, они «чудесным образом» его находят, и проход к воротам с лёгкостью перекрывается (рис. 8-2). Дело в том, что Нижние ворота (Н) попросту «смухлевали». Из пересечений d3 и c4 исходит нечётное количество рёбер. Этого быть никак не может, т.к. в соответствии с доказанным выше утверждением из пересечений d3 и c4 должно исходить чётное количество рёбер. Нижние ворота (Н) просто-напросто дорисовали «недостающее» ребро (c4;d3), через которое им забивается гол!

5). Дано: симметричное футбольное поле произвольных размеров.

Дать определение: понятия чётных и нечётных пересечений.

5.1. В ФУТБОЛЕ НА БУМАГЕ существует два вида пересечений: тупиковые и нетупиковые.

Тупиковыми называются пересечения, в которых можно попасть в тупик. Соответственно нетупиковыми называются пересечения, в которых нельзя попасть в тупик.

Попасть в тупик можно, если почти все рёбра, исходящие из данного пересечения заняты, т.е. если у данного пересечения осталось только одно незанятое ребро. Пример такого пересечения показан на рисунке 9.

Занявший такое пересечение игрок попадает в «тупик» и по правилам ФУТБОЛА НА БУМАГЕ проигрывает (рис. 10).

Нельзя попасть в «тупик» если у данного пересечения осталось два незанятых ребра. Пример такого пересечения показан на рисунке 11.

Занявший такое пересечение игрок по правилам ФУТБОЛА НА БУМАГЕ должен продолжить ход. Т.о. больше нет возможности сходить в это пересечение, т.к. все исходящие из него рёбра заняты (рис. 12).

Т.о. можно условно обозначить тупиковые пересечениянечётными, а нетупиковыечётными.

5.2. Теперь давайте исследуем на чётность все виды пересечений футбольного поля (кроме воротных пересечений – они этим свойством не обладают, т.к. по правилам ФУТБОЛ НА БУМАГЕ, если такое пересечение занято – одна из сторон автоматически проигрывает партию; это особенные пересечения).

В ФУТБОЛЕ НА БУМАГЕ существует семь видов пересечений (они показаны на рисунке 13).

Исследование на чётность:

1 – центр поля (d6):

Из этого пересечения делается первый ход, после чего от него отходят семь незанятых граней (рис. 14).

При дальнейшей игре, заняв центр, нужно от него «оттолкнуться», т.е. каждый раз будут заниматься две грани: 7:2=2×3+1

Т.е. после трёх прохождений через центр от него будет отходить одна незанятая грань.

Конец ознакомительного фрагмента.

Назад