Воображайте-2. Полигон для мозгов - Алла Зусман


Борис Злотин, Алла Зусман

Воображайте-2. Полигон для мозгов

© Б. Злотин, А. Зусман, 2018

© Оформление, издание, КТК «Галактика», 2018

Предисловие ко второму тому. Первые две недели

Дорогой читатель! Перед тобой второй том книги «Воображайте! Развиваем креативное мышление». Эта книга основана на дневниковых записях Летней школы развития творческого воображения, в которой участвовали все герои этой книги – Преподаватели Развития Творческого Воображения (РТВ) и их Ученики. В этой школе преподаватели учили школьников, а школьники – преподавателей самому интересному на свете делу – решению творческих задач.

Тысячелетиями считалось, что научить человека творчеству нельзя, что все зависит только от врожденного таланта. Оказалось, что это – не так. В середине прошлого века гениальный человек – учёный и изобретатель Генрих Саулович Альтшуллер (он же – прекрасный писатель-фантаст Генрих Альтов) создал Теорию Решения Изобретательских Задач (ТРИЗ), и оказалось, что любого нормального человека можно вовлечь в творчество, научить решать творческие задачи в технике, науке, бизнесе, искусстве, спорте, медицине, управлении людьми, политике и вообще в любой области человеческой деятельности.

Авторы этой книги имели счастье быть учениками, сотрудниками и друзьями Генриха Альтшуллера. А РТВ, о котором здесь рассказывается – курс тренировочных упражнений, который и превращает обычного человека в творца. Добро пожаловать в Новую Творческую Жизнь!

В первом томе этой книги мы рассказали о многих важных вещах, входящих в Теорию Изобретательства или с нею тесно связанных:

• О том, что такое творчество и какова его роль в жизни человечества и каждого человека в отдельности, как стать сэлфмэйдменом – мастером Самоделкиным;

• О том, как выбрать в жизни «Большую цель» и как к ней идти;

• Об изобретательских задачах, которые возникают не только в технике, но и в любой области человеческой жизни – от бизнеса до искусства, от медицины до математики, от военного дела до детских игр и т. п.;

• О том, что учёные и изобретатели мучительно тяжело решают творческие задачи с помощью Метода Проб и Ошибок (МПиО), и как им мешает в этом психологическая инерция;

• О том, как можно с этой психологической инерцией бороться;

• О «Мозговом Штурме»;

• О решающей роли в изобретательстве противоречий и возможности их разрешения;

• О системном подходе и его творческом применении;

• О том, что такое идеальная машина и как такие машины помогают решению изобретательских задач;

• О том, какие ресурсы и как они помогают изобретателям;

• О законах развития технических систем и их применении;

• Об очень странном подходе к изобретательству – «Методе Маленьких Человечков» (ММЧ) и управлении этими «Человечками» с помощью «Вепольного Анализа»;

• О том, как физика помогает изобретателям;

• О научной фантастике – тренировочном полигоне, помогающем изобретателям «накачивать мозговые мышцы».

А ещё в первом томе рассказывается, как начались Турниры Рыцарей Творчества и чем «рыцарь творчества» отличается от обычного «пробочника».

Во втором томе мы продолжаем рассказывать о методах изобретательства и, самое главное, об их совместном, комплексном применении для решения реальных задач.

Перед каждым из наших читателей открывается дорога в Большую жизнь, в которой успех в очень многом будет зависеть от того, смогут ли они найти решения неожиданных и необычных задач, которые «подбрасывает» жизнь. Наша цель – дать ребятам инструменты и оружие для жизненного успеха!

Благодарности

Авторы благодарят за тщательную работу научного редактора книги, кандидата физико-математических наук Александра Кавтрева. А также Елену Гин, внимательно прочитавшую рукопись и сделавшую ряд полезных предложений.

Отдельное спасибо мастеру ТРИЗ Анатолию Гину за инициативу по изданию книги и постоянное возвращение авторов к обсуждению вопросов образования.

Борис Злотин и Алла Зусман
Преподаватели РТВ

День пятнадцатый. Самый главный инструмент

Плакат с текстом висит в классе уже три дня. Это одна из задач, которую мы использовали как противоядие от «звёздной» болезни наших учеников. Сегодня, наконец, пришёл черёд эту задачу решать.

Задача 1

Для резки толстых листов металла применяются плазмотроны. На рисунке показано его устройство. Мощный источник тока одним полюсом подключён к разрезаемому металлу, а другим – к катоду плазмотрона, и между ними зажигается электрическая дуга. В зону дуги через сопло под высоким давлением подаётся инертный газ (углекислый газ или аргон), который нагревается от дуги, ионизируется и превращается в горячую плазму. То есть с атомов газа высокой температурой «срывает» электроны, превращая газ в скопление электронов и положительно заряженных атомов, потерявших все свои электроны или часть их. Достигнув поверхности металла, ионы мгновенно рекомбинируют, то есть к ионизированным атомам присоединяются обратно электроны и они превращаются в молекулы газа. При этом энергия, «взятая взаймы» у электрической дуги при ионизации выделяется в месте контакта плазмы с металлом. Температура в зоне резания доходит до десятков тысяч градусов. Металл плавится и испаряется. Чем больше электрический ток, тем быстрее режется металл. Но большой ток быстро разрушает катод. Приходится часто останавливать работу для его замены. Использование наконечников катода из специального сплава продлевает время непрерывной работы в несколько раз, но эти наконечники очень дороги. Как быть?

Эта задача, важная для производства, была решена Преподавателями много лет назад.

Ребята строят вепольные схемы, рисуют маленьких человечков, но ответа не находят. Затруднения вызваны тем, что обычно мы давали решать уже достаточно четко сформулированные задачи, а сейчас перед ними даже не задача, а изобретательская ситуация. Рассказано о технической системе, в которой есть какие-то недостатки. К ситуации можно подходить по-разному: отказаться совершенствовать предложенную систему и заменить её другой, например, плазменную резку лазерной или работать над созданием нового материала для катода, который сможет выдерживать высокие температуры без малейших разрушений.

Превратить ситуацию в четко сформулированную задачу, а потом найти и разрешить противоречие, скрытое в данной задаче, – для этого и существует Алгоритм Решения Изобретательских Задач – АРИЗ.

АРИЗ – одно из главных «созданий» Генриха Альтшуллера, первый его вариант был опубликован в 1959 году, он был очень прост, занимал пол-странички, но уже позволял довольно уверенно решать некоторые типы задач. Дальнейшая разработка АРИЗ велась путем обучения людей использованию алгоритма и наблюдения – как они решают задачи, какие возникают проблемы при этом, поиск путей решения этих проблем. Сам Альтшуллер описывал историю развития АРИЗ следующим образом:

«В первых версиях АРИЗ была показана дорога для изобретательского мышления – формулирование идеального конечного результата, противоречия, разрешения противоречия и т. п. И казалось, что этого достаточно, чтобы человек шёл правильным путём. Но оказалось, что люди очень быстро теряют направление, возвращаются на привычный путь перебора вариантов.

Тогда в АРИЗ стали вводиться ограничения («заборы»), которые не давали возможности людям уклоняться от пути. Но практика показала – никакие заборы не помогают, люди «перепрыгивают» через них, нарушают правила, если их трудно выполнить или они кажутся недостаточно очевидными и т. п. Тогда в АРИЗ был встроен «мотор», чтобы превратить его в «эскалатор», который бы подхватил человека и «тащил бы его». Это достигалось введением большого количества промежуточных шагов и формулировок, дополнительных правил и рекомендаций, примеров и т. п. Кроме того, в процессе развития появлялись все новые подходы к решению изобретательских задач (например, метод моделирования маленькими человечками, выделение оперативной зоны и т. п.)

Постепенно АРИЗ становился все более эффективным и универсальным, но и более сложным и требующим все большего обучения и практики для использования. АРИЗ-59 (цифра после слова АРИЗ означает год публикации методики) помещался на одной странице, АРИЗ-71 – 5–6 страниц, АРИЗ-85 В[1] с примерами – несколько десятков страниц».

Преподаватели понимали, что полный АРИЗ-85 слишком сложен для их учеников, поэтому для них был разработан облегченный вариант алгоритма, младший брат АРИЗа – «АРИЗЕНОК».

Мы вывешиваем первый плакат.

– Кто помнит, что такое мини-задача? – Это задача, в которой решение должно быть получено путем минимальных изменений в уже существующей системе.

– А какие у мини-задачи преимущества?

– Меньше изменений – значит, получится более идеальное решение! Легче будет внедрить!

– Верно. И ещё одно преимущество: мини-задачу проще всего сформулировать. Все в системе остается как было (или почти все), а вредный эффект, недостаток должен исчезнуть. В АРИЗ мини-задача строится по строгой схеме. Необходимо отказаться от терминов. И ещё нужно уметь сформулировать техническое противоречие (ТП). Так в ТРИЗ называется ситуация, когда попытка улучшить одну характеристику системы приводит к ухудшению другой. В мини-задаче технические противоречия «ходят парой», потому что на любую проблему всегда можно взглянуть с двух противоположных сторон.

Приступаем к анализу задачи о плазмотроне

1.1. Техническая система для резки металла включает электрод, газ, разрезаемый металл и электрическую дугу.

ТП-1: если дуга очень сильная, она хорошо режет металл, но разрушает электрод.

ТП-2: если дуга слабая, она не разрушает электрод, но плохо режет металл.

Необходимо при минимальных изменениях в системе обеспечить отсутствие разрушения электрода при хорошей резке.

Следующий шаг – выбор конфликтующей пары, включающей изделие и инструмент. Иногда в задачах бывает два изделия или два инструмента. В нашем случае:

1.2. Изделия – металл (М) и электрод (Э).

Инструмент – электрическая дуга. «Взаимоотношения» между инструментом и изделиями:

1.3. ТП-1: сильная дуга хорошо режет металл, но портит электрод.

ТП-2: слабая дуга не портит электрод, но плохо режет металл.

На схеме это выглядит так:

Следующий шаг – выбор ТП. Фактически у нас в мини-задаче две задачи. Можно «идти» от ТП-2 – слабой дуги. Но тогда придется искать новые способы повышения производительности резки, а это приведет к отказу от мини-задачи. Лучше «работать» с ТП-1: у нас уже производительность обеспечена, нужно только решить проблему разрушения электрода.

1.4. Выбираем ТП-1. Выбрав конфликт, мы сузили, сделали более четкой задачу. Теперь главное – не терять ее, не путаться, не возвращаться раньше времени к другой. Для этого следующий шаг – усиление конфликта, чтобы не «тянуло» к компромиссу, к какой-то средней по силе дуге. Обострение противоречия – шаг к его разрешению!

1.5. Усиление конфликта: очень сильная дуга прекрасно режет металл, но очень быстро разрушает электрод.

Заключительный шаг первой части как бы подводит итог анализу. Но в ней появляется и новое действующее лицо – икс-элемент – «таинственный незнакомец», который должен помочь нам решить задачу. Правда, его полномочия обычно не очень широки. Ведь у нас есть инструмент – дуга, которая с одной частью работы справляется хорошо – прекрасно режет металл. Здесь ей помогать не надо. На долю икс-элемента остается обеспечить «неразрушение» электрода. Но при этом он не должен мешать дуге, иначе «за что боролись?» Икс-элемент как в алгебре – неизвестное, которое нужно найти. Это может быть вещество или поле, или просто какое-то изменение в системе.

1.6. Модель задачи. Даны сильная дуга, металл и электрод. Очень сильная дуга прекрасно режет металл, но сразу разрушает электрод. Необходимо найти такой икс-элемент, который устранит разрушение электрода, не мешая очень сильной дуге резать металл.

Теперь можно использовать вепольный анализ. Здесь – слово ребятам.

– Это типичный вредный веполь, – рассуждает Женя. – B1 – электрод, B2 – дуга, П – вредное тепловое поле. Нужно ввести модификацию, скорее всего дугу, которая бы защищала электрод.

– Какую модификацию?

Ответа нет. Трудно придумать модификацию дуги. А противодействующее поле? Охлаждать электрод?

– До этого, конечно, давно додумались, но эффект не очень большой.

– Оттянуть каким-то веществом лишнее тепло?

Ребята хотят продолжить поиск решения с помощью вепольного анализа. Но Преподаватель против. Если решение не очевидно, нет смысла тратить много времени на перебор веществ и полей – лучше продолжить уточнение задачи по АРИЗ.

Мы вывешиваем второй плакат.

2.1. Оперативная зона – место конфликта – там, где дуга касается электрода.

2.2. Оперативное время – все время пока горит дуга.

2.3. Ресурсы. Вещественные, энергетические, из оперативной зоны и вне ее.

Вещественные – плазма, газ, воздух, металл электрода, разрезаемый металл…

Полевые – высокая температура, давление газа, движение газа и плазмы, электрический ток, магнитное поле дуги, гравитационное поле, магнитное поле Земли

Перечисляя ресурсы, ребята тут же пытаются «пристроить их к делу». Это не страшно, но много времени терять на такие попытки не стоит. Ведь обзор ресурсов на этой стадии – предварительный. Вообще попытки найти решение, не дожидаясь конца анализа, всегда есть. Это немного странно – ведь если решаешь квадратное уравнение по формулам Виета, нет смысла где-то посередине бросать вычисления и начинать гадать. Но так уж устроен человек – при решении изобретательских задач всегда хочется побыстрее угадать ответ. Мы в таких случаях рекомендуем пришедшие в голову идеи обдумывать, записывать, а потом идти дальше по АРИЗ.

Ребятам очень не нравится записывать идеи – отвлекает от увлекательной генерации. Кстати, та же проблема часто и с взрослыми. Приходится «прочищать мозги»:

• Не записал – потерял. Новая идея вытеснит эту, потом будете затылок чесать – что же там было такое интересное?

• Не записал – идея давит на подсознание «изнутри» – и начинается «подгонка» шагов АРИЗ под свою идею. Трещит и ломается вся логика, поиск уходит в сторону…

Итак, третий плакат.

Плакат требует пояснений. Сама идея идеального конечного результата (ИКР) понятна – ребята хорошо усвоили понятие идеальности. Но раньше эту идеальность формулировали как кто захочет. В АРИЗ же ИКР строится по определенной схеме (шаг 3.1). А на шаге 3.2 нужно постараться ещё раз пересмотреть ресурсы и выбрать из них наиболее подходящий на роль икс-элемента. Далеко не всегда можно сделать этот выбор. Тогда нужно идти дальше, не выпуская из виду наиболее реальных «кандидатов»:

• Физическим противоречием (ФП) называется ситуация, когда к физическому состоянию объекта в оперативной зоне и в оперативное время предъявляются противоречивые, противоположные требования. ФП как бы прячется внутри технического противоречия и является его причиной. Противоположные требования могут предъявляться ко всей оперативной зоне (ФП на макроуровне) или к её частицам (ФП на микроуровне).

• ИКР-2 – фактически новая формулировка задачи. Иногда сам поражаешься, как этот анализ меняет видение проблемы. Вообще-то часто (особенно у профессионалов) решение приходит уже на этом этапе.

Дальше