Думай как математик. Как решать любые задачи быстрее и эффективнее - Барбара Оакли 2 стр.


Однако со временем стало приходить понимание. Выяснилось, что часть предыдущих проблем коренилась в неверном подходе – как если бы я пыталась поднять бревно, на котором сама же и стою. Я начала замечать полезные мелочи, помогающие не только заучивать материал, но и вовремя останавливаться. Я поняла, что освоение одних техник может стать полезнейшим инструментом овладения другими. Я также научилась не браться за заучивание больших объемов информации, а оставлять себе время попрактиковаться, даже если при этом мои одногруппники заканчивали обучение раньше меня (я в каждом семестре проходила меньше предметов, чем они).

По мере того как я училась учиться математике и естественным наукам, дело шло все легче. К моему удивлению, повторялась ситуация с изучением языков: чем лучше я разбиралась в предмете, тем больше мне нравилось им заниматься. Бывшая «королева математиков-слабаков» заработала степень бакалавра по электротехнике, затем магистра по компьютерной и электротехнике, а напоследок докторскую степень по системотехнике, требовавшую обширных знаний по термодинамике, электромагнитным явлениям, акустике и физической химии. Чем выше я поднималась, тем лучше были оценки, и к докторской степени я продвигалась как на крыльях, блистая отличными баллами. (Впрочем, возможно, не совсем на крыльях. Хорошие оценки требовали труда, но то, над чем приходилось трудиться, было мне понятно.)

Теперь, став преподавателем технических наук, я заинтересовалась процессами, происходящими в мозге человека. Мой интерес естественным образом возник из того факта, что именно инженерные технологии лежат в основе медицинских исследований, позволяющих заглянуть внутрь мозга. Теперь мне гораздо понятнее, как и почему я смогла изменить свое сознание. И я гораздо яснее вижу, как помочь вам – именно вам – учиться более эффективно, без тех трудностей и препятствий, что выпали на мою долю{1}. А поскольку моя исследовательская деятельность включает в себя изыскания в области технических, социальных и гуманитарных наук, то я хорошо знакома с творческими процессами, на которых основаны не только литература и искусство, но и математика и естествознание.

Если вы (пока еще) не считаете себя от природы одаренными в математике и естественных науках, вас может удивить тот факт, что мозг создан для выполнения сложных расчетов. Именно такие расчеты позволяют нам ловить мяч, раскачиваться на стуле, объезжать на машине дорожные ямы. Мы производим непростые вычисления и решаем головоломные уравнения бессознательно, не отдавая себе отчета в том, что решение нам известно задолго до того, как мы придем к нему долгим путем{2}. На самом деле чутье и способности к математике и естественным наукам есть у каждого. Нужно лишь освоить терминологию и соответствующую культуру.

В процессе создания этой книги я общалась с сотнями людей – лучшими в мире преподавателями математики, физики, химии, биологии и инженерных наук, а также преподавателями педагогики, психологии, нейробиологии и таких дисциплин, как бизнес и здравоохранение. Я поражалась тому, насколько часто эти специалисты мирового класса использовали при изучении своих наук ровно те же методы, которые описываются в этой книге. Этим же приемам они пытались научить и своих студентов, однако поскольку такие методики порой кажутся нелогичными и даже иррациональными, то преподавателям не всегда удавалось убедить студентов ими пользоваться. Более того, некоторые из этих способов передачи и получения знаний часто высмеиваются учителями из числа заурядных, поэтому знаменитые преподаватели доверяли мне свои секреты довольно сдержанно, не зная, что множество других их коллег того же масштаба применяют те же приемы. Эти советы лучших профессоров мира теперь, собранные воедино, представлены и вам для изучения и применения на практике. Методы, описанные в этой книге, особо ценны для случаев, когда вам нужно получить и хорошо усвоить глубокие знания за ограниченное время. Вам также будут полезны советы людей, которые, как и вы, учатся и по собственному опыту знают все возможные трудности и ограничения.

Помните: это издание – для тех, кто уже овладел математикой, и для тех, кто боится к ней подступиться. Я написала ее для того, чтобы облегчить вам изучение математики и естественных наук, независимо от вашей былой успеваемости и от вашего мнения о собственной пригодности к обучению. Из моей книги вы узнаете о мыслительных процессах и о том, как ваш мозг усваивает новые знания, а также о том, как он порой убеждает вас, будто вы чему-то учитесь, хотя на самом деле никакого обучения не происходит. Книга также содержит множество упражнений по развитию навыков обучения, которые вы можете применить к вашим текущим занятиям.

Если вы уже поднаторели в математике и естественных науках, эти советы помогут вам совершенствоваться, принесут радость, разовьют творческий подход и придадут изящества вашим уравнениям.

Если вы попросту уверены в том, что не имеете способностей к математике и естественным наукам, эта книга может вас переубедить. Вы, возможно, этому не поверите, но все же получите надежду. Когда вы попробуете применить на практике советы, приведенные здесь, вы с удивлением обнаружите в себе перемены, которые откроют вам путь к новым увлечениям.

Эта книга поможет вам добиваться лучших результатов и подходить к делу творчески – не только в математике, но и во всем, чем вы занимаетесь.

А теперь к делу!

2. Легкость – лучший подход

Почему излишняя старательность может быть вредна

Если вы хотите проникнуть в некоторые важнейшие тайны изучения математики и естественных наук, взгляните на эту фотографию.

Мужчина справа – легендарный шахматный гроссмейстер Гарри Каспаров. Мальчик слева – 13-летний Магнус Карлсен. Карлсен только что отошел от шахматной доски в разгаре партии в быстрые шахматы – игры, не предусматривающей длительного обдумывания ходов и стратегии. Это примерно как решить вдруг сделать заднее сальто, идя по канату над Ниагарским водопадом.

Да, Карлсен выбивал противника из колеи, и Каспаров, вместо того чтобы разгромить дерзкого мальчишку, сыграл вничью. Однако гениальный Карлсен, который впоследствии стал самым молодым шахматистом, добившимся наивысшего шахматного рейтинга, не просто вел интеллектуальное сражение со старшим противником. Понимание общего подхода Карлсена может дать нам ключ к процессам, происходящим в мозгу, когда человек изучает математику и естественные науки. Прежде чем рассматривать то, как Карлсен противостоял Каспарову, нам нужно остановиться на нескольких важных принципах человеческого мышления (а к Карлсену мы еще вернемся, не сомневайтесь!).

В этой главе мы коснемся некоторых основных тем нашей книги, поэтому не удивляйтесь тому, что вам придется переключать восприятие с одного предмета на другой. Способность переключать внимание – сначала ухватывать деталь изучаемой общей картины, а потом возвращаться к предмету для полного понимания происходящего – сама по себе составляет один из главных предметов этой книги.

Тринадцатилетний Магнус Карлсен (слева) и легендарный Гарри Каспаров на турнире по быстрым шахматам в Рейкьявике, 2004 г. На лице Каспарова проступает явное недовольство

ВАША ПОПЫТКА!
Настройте свой «мыслительный насос»

Когда вы впервые начинаете просматривать главу учебника по математике или естественным наукам, полезно пробежать глазами весь раздел, составляя себе общую картину: взглянуть не только на схемы, диаграммы и фотографии, но и на заголовки разделов, выводы и даже на вопросы в конце текста (если они есть). На первый взгляд такой подход кажется нелогичным – вы ведь еще не читали главу! – однако он помогает настроить «мыслительный насос». Попробуйте прямо сейчас проглядеть всю главу и вопросы в конце.

Вы удивитесь тому, насколько минута-другая, потраченная на такое предварительное просматривание новой главы, помогает упорядочить мысли. Таким способом еще до того, как начать внимательное ознакомление с текстом, вы создаете незаметные нейронные зацепки для восприятия, которые облегчат вам усвоение материала.

Мышление сфокусированное и мышление рассеянное

С самого начала XXI века нейробиология уверенными шагами продвигается к пониманию двух типов систем, попеременно используемых мозгом. Это системы, ответственные за состояние повышенного внимания и за более расслабленное состояние покоя{3}. Мыслительные режимы, относящиеся к таким состояниям, мы будем называть соответственно «сфокусированным мышлением» и «рассеянным мышлением»; и то и другое очень важно при обучении{4}. В повседневной жизни ваше состояние часто меняется и вы пребываете либо в одном, либо в другом мыслительном режиме, а не совмещаете оба сразу. В рассеянном состоянии мозг способен незаметно, в качестве фонового процесса, обдумывать то, на чем вы в данный момент не сосредоточены{5}. А иногда вы можете переключаться в рассеянный режим на короткий миг.

Сфокусированное мышление крайне важно для изучения математики и естественных наук. Оно предполагает прямое обращение к решаемой задаче и использует рациональный, последовательный и аналитический подход. Такой тип мышления ассоциируется со способностью сосредотачиваться, связанной с префронтальным участком коры головного мозга (находящимся непосредственно за лобной костью){6}. Стоит вам обратить на что-то внимание – и готово: сфокусированное мышление включилось, как четкий всепроникающий свет от ручного фонарика.

Префронтальный участок коры головного мозга находится за лобной костью

Рассеянное мышление тоже важно для изучения математики и естественных наук. Оно дает нам возможность испытывать внезапные озарения и находить неожиданные решения, когда мы бьемся над какой-нибудь задачкой. Также оно ассоциируется с широким ракурсом и способностью видеть всю картину целиком. Рассеянное мышление значит, что вы ослабляете внимание и мысли бродят как им захочется. Такое расслабление позволяет различным участкам мозга возвращать догадки и озарения в активную зону. В отличие от сфокусированного мышления рассеянное мышление почти не связано с конкретными участками мозга – оно как бы «рассеяно» по всему мозгу{7}. Озарения и догадки, приходящие в таком состоянии, часто берут начало в предварительных размышлениях, случающихся при сфокусированном мышлении. (Рассеянному мышлению, чтобы делать кирпичи, нужна глина!)

Изучение нового материала сопровождается «мигающими» нейронными процессами в разных участках мозга и передачей данных от полушария к полушарию{8}. Это значит, что думать и учиться – процесс более сложный, чем обычное переключение со сфокусированного на рассеянное мышление и обратно. К счастью, нам не нужно вдаваться в тонкости физиологических механизмов. Мы применим другой подход.

Сфокусированное состояние – тесный пинбол-автомат

Для лучшего понимания сфокусированных и рассеянных мыслительных процессов мы немного поиграем в пинбол (метафоры – мощное средство для изучения математики и естественных наук). В старой игре вы отводите пружинный рычажок и он вбрасывает на поле шарик, который потом беспорядочно мечется между круглыми резиновыми буферами.

Этот зомби со счастливым лицом – игрок в мыслительный пинбол

Взгляните на следующую иллюстрацию. Когда вы сосредотачиваете внимание на проблеме, ваше сознание поворачивает мыслительный рычажок и высвобождает мысль. Бац – и мысль выскакивает на поле, мечась от буфера к буферу, как в пинбольной игре в голове слева. Это сфокусированное мышление.

Посмотрите, как близко друг к другу расположены буфера при сфокусированном мышлении. А при рассеянном мышлении (справа) резиновые буфера расположены не так плотно. (Если вы хотите продолжить эту метафору дальше, считайте каждый буфер пучком нейронов.)

Буфера, кучно поставленные при сфокусированном мышлении, означают, что вам легче обдумывать конкретную мысль. Сфокусированный режим в основном используется для сосредоточения на пунктах, которые уже тесно связаны в вашем сознании (часто потому, что понятия, лежащие в их основе, вам знакомы и понятны). Если пристальнее взглянуть на верхнюю часть рисунка, относящегося к сфокусированному мышлению, мы увидим более широкую, «хорошо протоптанную» часть линии: она показывает, как мысль проходит по уже изведанным путям. Например, сфокусированный режим используется для перемножения чисел – если вы, конечно, уже знаете правила умножения. При изучении иностранного языка сфокусированный режим используется, например, для лучшего усвоения испанских глаголов, спряжение которых вы выучили на прошлой неделе. Если вы пловец, то в сфокусированном режиме вы анализируете движения при плавании брассом, когда в подводном положении учитесь делать движение более энергичным.

Когда вы на чем-то сосредоточены, отвечающий за сознательное внимание префронтальный участок коры головного мозга автоматически посылает по мозговым каналам сигналы, которые соединяют различные участки мозга, связанные с тем, о чем вы в данный момент думаете. Это похоже на то, как осьминог распускает щупальца во все стороны, трогая те предметы, которые ему сейчас нужны. И подобно тому, как у осьминога ограничено число щупалец, количество предметов, которые ваша рабочая память способна удерживать одновременно, тоже ограничено. (О рабочей памяти мы поговорим чуть позже.)

Часто задача впервые попадает в мозг тогда, когда вы фокусируете внимание на словах – читаете книгу или просматриваете конспект лекции. Осьминог, олицетворяющий ваше внимание, активирует сфокусированное состояние мозга. Изначально присматриваясь к задаче, вы думаете напряженно, тесно поставленные буфера запускают мысль по знакомым нейронным путям, связанным с уже известными вам понятиями. Мысли легко пробегают по проторенным маршрутам и быстро находят решение. Однако в математике и естественных науках даже минимальные сдвиги в условиях задачи могут неузнаваемо ее изменить – и решить ее становится намного сложнее.

В игре, называемой «Пинбол», шарик (отождествляемый с мыслью) выбрасывается пружиной и начинает беспорядочно отскакивать от резиновых буферов, выстроенных в ряды. Два пинбольных автомата, изображенные здесь, – символы сфокусированного (слева) и рассеянного (справа) мышления. Сфокусированный режим соотносится с усиленной сосредоточенностью на конкретной задаче или понятии. Однако в сфокусированном состоянии вы порой внезапно обнаруживаете, что, глубоко сосредоточившись на задаче, пытаетесь ее решить с помощью неверных мыслей, гнездящихся в других местах мозга – не в тех, где находятся «правильные» мысли, нужные для решения задачи.

В качестве примера посмотрите на верхнюю «мысль», которую пинбол-автомат поначалу перебрасывает с места на место на левой иллюстрации. Эта мысль очень далека от нижнего участка мыслей и никак с ним не соединена. Обратите внимание: часть «верхнего» участка мысли движется по широким дорожкам – это значит, что нечто подобное вы уже обдумывали. Нижняя часть – новая мысль: под ней нет широких протоптанных путей.

Рассеянный, расфокусированный подход (справа) часто связан с широкой перспективой и представлением об общей картине. Этот способ мышления полезен при получении новых знаний. Как видите, рассеянное мышление не дает четко сосредоточиться на конкретной задаче, зато позволяет ближе подойти к решению, поскольку буфера поставлены редко и потому пути между ними длиннее.

Назад Дальше