Со времен Юма главный вызов заключался в следующем: как отличить каузальные и некаузальные паттерны осуществления событий? В 60–70-х годах XX века появились три основных метода, построенные на трудах Юма. Следствие редко проистекает от воздействия единственной причины, поэтому Джон Мэки[21] разработал теорию, представляющую собой набор условий, которые совместно производят следствия. Эта теория позволяет лучше исключить некаузальные взаимосвязи, исходя из сложности причин[22]. Точно так же многие каузальные взаимосвязи включают в себя элемент случайности, когда причины просто с большей вероятностью вызывают соответствующие следствия. Причем необязательно, что подобное будет происходить каждый раз (согласно вероятностным подходам Патрика Суппеса[23] и др.[24]). Юм также заложил основы контрфактуального подхода, задача которого – дать определение причины, исходя из того, насколько иными могли бы стать следствия, если бы причина не имела места[25]. Например, благодаря кому-то была достигнута победа в игре, поскольку без усилий этого конкретного игрока победить не удалось бы ни за что.
Кажется, что у всех этих философских трудов нет ничего общего с вычислительными методами, но это не так. Для компьютерщиков этаким святым Граалем в сфере искусственного разума стала возможность автоматизировать человеческое мышление, а ключевым элементом оказалось нахождение причин и формулировка объяснений. Это используется и в робототехнике (роботам нужны модели мира, чтобы планировать действия и предсказывать их последствия), в рекламе (компания Amazon лучше формулирует рекомендации для целевой аудитории, если знает, что заставило вас кликнуть по клавише «купить прямо сейчас») и медицине (врачи отделения интенсивной терапии моментально узнают, почему состояние пациента внезапно изменилось). И все же для разработки алгоритмов (последовательности шагов по решению задачи) мы должны конкретизировать проблему. Чтобы создать программу для выявления причин, требуется их рабочее определение.
В 1980-х годах группа специалистов по информационным технологиям под руководством Джуды Перла[26] доказала, что философские теории, определяющие каузальные взаимосвязи в терминах вероятностей, можно представить графически, обеспечив одновременно визуальное изображение причинных связей и способ кодирования математических зависимостей между переменными. Что еще важнее, эксперты предложили методы построения графических моделей на основе предварительного знания и методов их выведения из имеющихся данных[27]. Эти работы породили множество новых вопросов. Можно ли определить взаимосвязь там, где запаздывание между причиной и следствием – величина переменная? Если сами взаимосвязи со временем изменяются, что мы можем узнать? Кроме того, компьютерщики разработали метод автоматизации поиска объяснений, а также методы тестирования объяснений для каждой модели.
В последние несколько десятилетий заметен существенный прогресс, но многие проблемы по-прежнему не решены – главным образом потому, что нашей жизнью все в большей степени правит информация. Однако вместо тщательно выверенных баз данных, собираемых исключительно в рамках научных исследований, мы имеем дело с громадным массивом неопределенных сведений, полученных в результате простых наблюдений.
Представим на первый взгляд несложную проблему: определить социальный статус людей по данным Facebook. Первая сложность заключается в том, что этой социальной сетью пользуется далеко не каждый, так что вы изучите лишь определенную группу, которая может не быть репрезентативной для населения в целом. Вторая: не все используют Facebook одинаково. Кто-то вообще не указывает статус отношений, кто-то лжет, а кто-то просто не обновляет профиль.
Итак, возникла масса проблем с формулированием выводов о причинных зависимостях. Самые важные заключаются в поиске причин на основе неточных данных или данных, в которых отсутствуют необходимые переменные и результаты наблюдений (если мы не фиксируем фактов курения, не начнем ли выискивать другие условия, вызывающие рак легких?), сложных взаимосвязей (что происходит, когда для наступления следствия требуется целая последовательность событий?), а также причин и следствий нерегулярных ситуаций (что вызвало резкий обвал фондового рынка в 2010 году?).
Что интересно, именно массивы данных, к примеру электронные медицинские карты, сводят на одном поле здравоохранения специалистов как по эпидемиологии, так и по информатике, которые разбираются в факторах, влияющих на здоровье населения. Доступность исторических данных о состоянии здоровья больших групп населения – их диагнозы, симптомы, лечение, экологические условия проживания и многое другое – становится громадным преимуществом для исследователей, старающихся понять факторы, которые влияют на состояние здоровья, а затем использовать это понимание для плановых действий в здравоохранении. Соответствующие вызовы лежат одновременно в области планов клинических исследований (с традиционным упором на эпидемиологические аспекты) и в возможности делать эффективные и достоверные заключения на основе крупных наборов данных (здесь главное место отводится компьютерной науке).
Эпидемиология, с точки зрения стоящих перед ней целей, имеет долгую историю разработки методов выявления причин – начиная с Джеймса Линда, который выборочно обследовал моряков, чтобы узнать причины цинги[28], и Джона Сноу, который обнаружил, что холера передается через зараженную воду[29], до Коха, который выявил связь между бактериями и туберкулезом[30], и Остина Хилла, связавшего рак легких с курением и сформулировавшего инструкции по оценке каузальных утверждений[31].
Медицинские исследования в наше время основываются на данных больше, чем когда-либо в истории. И больницы, и отдельные специалисты, оказывающие врачебные услуги, переводят данные о пациентах из бумажных в электронные форматы, при этом они должны следовать определенным критериям их применения (например, на основе данных принимаются врачебные решения). И все же большинство задач по соответствию этим критериям включает в себя анализ больших и сложных массивов информации, для которого нужны вычислительные методы.
Нейробиологи имеют доступ к обширным объемам информации о мозговой деятельности, содержащимся в записях ЭЭГ и МРТ[32], и для их анализа берутся на вооружение методы из области экономики и информационных технологий. Данные ЭЭГ – это, по сути, количественные, числовые записи мозговой активности, которые структурно не слишком отличаются от информации фондового рынка, сообщающей цены на акции и объемы торгов в динамике. Клайв Грэнджер[33] сформулировал теорию причинности в терминах экономических временных рядов (и получил за это Нобелевскую премию), но сам метод не связан с экономикой и применялся также к другой биологической информации, например к биочипам для анализа экспрессии генов (на их основе измеряется динамика активности генов)[34].
Основная проблема в сфере экономики – определить, поможет ли реализация той или иной программы достичь поставленной цели. Это очень похоже на проблемы общественного здравоохранения, например попытки определить, поспособствует ли ограничение продаж газированных напитков борьбе с ожирением. Эта задача – одна из самых сложных, так как во многих случаях сам факт реализации программы инициирует изменения в системе.
В главе 9 мы увидим, как поспешное внедрение программы по сокращению размера учебных классов в штате Калифорния дало результаты, сильно отличавшиеся от тех, к которым привел первый эксперимент в Теннесси. Вмешательство может иметь положительный эффект при условии, что в остальном обстоятельства остаются прежними, а новая политика изменяет человеческое поведение. Если применение законов об использовании ремней безопасности снизило количество нарушений ПДД, а уровень смертности при этом поднялся, важно определить степень воздействия дорожного законодательства и решить, дать обратный ход жестким нормам или, напротив, ввести новые.
Наконец, для психологов выявление причин – как это работает, насколько по-разному действуют люди и животные, если осмысление дает сбой, – становится одним из ключей к пониманию поведения. Экономисты тоже стремятся понять, почему индивидуумы ведут себя так, а не иначе, в особенности когда дело доходит до принятия решений. Недавно психологи и экономисты совместно применили экспериментальные методы, чтобы изучить интуитивные воззрения на причинные взаимосвязи (в рамках научного направления, именуемого «экспериментальная философия», или X-Phi[35]).
Одна из главных проблем – выявление взаимосвязи между каузальными и моральными суждениями. Если некто подтасовал сведения в заявке на грант и получил финансирование, а другие, честные и достойные ученые – нет, потому что объемы средств ограничены, можно ли сказать, что причина неполучения ими гранта – тот самый мошенник? Стоит задаться вопросом о его виновности и о том, изменились бы наши взгляды на ситуацию, если бы жульничал кто-то другой. Понимание, каким образом формируются каузальные суждения, важно не только для лучшего представления о способе мышления, но и из практических соображений – к примеру, для разрешения разногласий, улучшения отдачи от теоретического обучения и практической подготовки[36] и обеспечения честных судебных разбирательств.
Как вы узнаете из этой книги, невозможно устранить все источники ошибок и смещений. Но реально эффективнее выявлять случаи, когда вмешательство этих факторов возможно, и учитывать последствия.
Зачем нужны причины
Причинам сложно дать определение, их нелегко отыскать – так в чем же заключается их смысл, почему мы в них нуждаемся?
Есть три основополагающие вещи, которые могут выполняться либо только по определенным причинам, либо лучше всего по определенным причинам: прогнозирование, объяснение и вмешательство.
Скажем, нужно предсказать, кто выиграет президентские выборы в США. Предлагаются всевозможные модели: к примеру, кандидат от республиканцев должен выиграть праймериз[37] в Огайо; ни один президент США со времен Рузвельта не был переизбран, если на тот момент уровень безработицы превышал 7,2 %[38]; в США на президентских выборах побеждали только кандидаты-мужчины (по крайней мере на момент написания этой книги)[39].
Но модели – всего лишь модели. Можно обнаружить неограниченное количество общих свойств у группы лиц, когда-либо побеждавших на выборах, но это не объяснит, почему победил тот или иной кандидат. Видимо, избирателям важен именно уровень безработицы; а может, этот факт просто дает косвенную информацию о состоянии дел в стране и экономике, и мы должны сделать вывод, что при высоком уровне безработицы люди стремятся к переменам? Хуже того, если выявленные зависимости оказываются простыми совпадениями, они в любой момент могут дать сбой. Кроме того, выводы базируются на ограниченном массиве данных; в США было только 44 президента[40], и менее половины из них переизбирались на новый срок.
Перед нами та самая проблема «черного ящика», в который мы закладываем некие данные и получаем на выходе прогнозы без всяких убедительных объяснений или доводов. Если неизвестно, почему эти прогнозы работают (например, почему победа в конкретном штате приводит к триумфу на национальных выборах), то нельзя и предвидеть, когда они не сработают. С другой стороны, мы знаем, что, скажем, Огайо «решает» исход выборов просто в силу того, что его демографический паттерн обладает высокой репрезентативностью в масштабах всей страны и не привязан к политической партии. Значит, можно предположить, что при серьезных изменениях в составе населения штата из-за мигрантов исчезнет причина, по которой этот фактор берется за основу прогнозов. Реально также провести национальный опрос и получить более прямой и точный показатель измерения, если ситуация в этом регионе – всего лишь косвенный индикатор общенациональных тенденций.
Получается, причины дают более строгие методы предсказания событий, чем корреляции.
Возьмем другой пример. Скажем, определенная комбинация генов повышает как толерантность к физическим нагрузкам, так и иммунный ответ[41]. Таким образом, можно утверждать, что повышенная толерантность к нагрузкам – хороший индикатор, характеризующий иммунный ответ конкретного лица.
Однако степень толерантности к нагрузкам дает очень приблизительную оценку, поскольку может проистекать из множества причин, помимо мутации генов (например, из-за хронической сердечной недостаточности). Таким образом, использование только показателя толерантности к нагрузкам в качестве диагностического индикатора способствует ошибкам и, следовательно, недооценке или переоценке факторов риска. Что еще более важно, зная, что генетическая вариативность может быть причиной и того и другого, мы можем измерить риски двумя способами и обойтись без избыточных уточнений.
Отметим, однако, что этот случай не подходит к ситуации, когда генетические тесты характеризуются высокой степенью погрешности. Здесь данные о физических нагрузках действительно становятся подкрепляющими доказательствами. В конце концов, послать пациента в лабораторию физиологии спорта гораздо затратнее, чем провести тест на какую-то аллель[42]. И все же мы не можем противопоставлять конкретность измерения его стоимости (если бы физиологические тесты были намного дешевле генетических, мы всегда склонялись бы начинать именно с них, даже понимая их косвенный характер), пока не узнаем подоплеку причинных взаимосвязей этих факторов. Итак, даже если наша единственная цель – прогнозирование (к примеру, кто выиграет выборы или каков риск заболеть конкретной болезнью), понимая надежность тех или иных факторов в качестве прогнозного индикатора, мы улучшим как точность, так и стоимость/эффективность принятия решений.
А теперь, скажем, мы хотим узнать, почему между некими событиями существует взаимосвязь. Какова зависимость между падением остроты зрения и снижением веса? Одно только знание, что то и другое часто наблюдается одновременно, не дает полной картины. Разобраться в сути мы сможем, только выяснив, что у этих симптомов есть общая причина – диабет. Необходимость выяснять истоки в подобного рода объяснениях может показаться очевидной, однако, не избегая выяснения, мы при этом редко глубоко копаем.
Возможно, вы прочли научный доклад о том, что потребление красного мяса повышает смертность. Не зная, однако, почему это так, вы не извлечете из этих сведений практическую пользу. Возможно, любители мяса больше пьют спиртного или избегают физических упражнений. Аналогично, даже если рост смертности не коррелирует с другими факторами риска, но как-то связан с потреблением этого продукта, может существовать множество способов снизить опасность. Все зависит от того, с чем именно связано увеличение летальности – с количеством несчастных случаев на барбекю или с потреблением мяса как таковым (например, можно готовить его другими способами или стать вегетарианцем). На самом деле мы должны не просто осознать взаимосвязь между красным мясом и смертью, а обнаружить причину, действительно вызывающую летальный исход.