Краткая история почти всего на свете: экскурсия в окружающий мир - Брайсон Билл 7 стр.


Однако при всех этих достижениях крупнейшим вкладом Галлея в сокровищницу человеческих знаний было, пожалуй, участие в небольшом научном пари с двумя другими видными фигурами того времени: Робертом Гуком, которого теперь скорее помнят в связи с тем, что он первым ввел понятие и дал описание живой клетки, и великим, исполненным достоинства сэром Кристофером Реном, который вообще-то прежде всего был астрономом, а потом уж архитектором, хотя об этом сегодня обычно уже не помнят. В 1683 году, когда Галлей, Гук и Рен вместе обедали в Лондоне, разговор зашел о движении небесных тел. Было известно, что планеты склонны обращаться по особой формы овалам, которые называют эллипсами – по выражению Ричарда Фейнмана[59], по «очень специфической и точной кривой», – но никто не знал причин такого движения. Рен щедро предложил 40 шиллингов (примерно соответствует двухнедельному заработку) тому, кто первым найдет объяснение.

Гук, широко известный приписыванием себе идей, не всегда своих собственных, заявил, что он уже решил эту проблему, но отказался поделиться решением на том интересном и остроумном основании, что не хочет лишать других удовольствия найти ответ самим. Вместо этого он «на время утаит решение, чтобы другие могли лучше его оценить». Если у него и были какие-то соображения по этому поводу, никаких свидетельств он не оставил. Галлей, однако, до того загорелся желанием найти ответ, что на следующий год поехал в Кембридж и набрался смелости обратиться к профессору математики Исааку Ньютону в надежде, что тот сумеет ему помочь.

Ньютон, бесспорно, был странной личностью – сверх всякой меры выдающийся мыслитель, но замкнутый, безрадостный, раздражительный до безумия, легендарно рассеянный (говорили, что по утрам, свесив ноги с кровати, он мог часами сидеть, размышляя над осенившими его вдруг идеями) и способный на самые неожиданные выходки. Он создал собственную лабораторию, первую в Кембридже, но затем занялся весьма странными опытами. Например, однажды ввел себе шило – длинную иглу, какими пользуются при сшивании кожи, – в глазную впадину и крутил им «между глазом и костью как можно ближе к глазному дну» лишь для того, чтобы посмотреть, что будет. Каким-то чудом ничего не случилось, по крайней мере ничего серьезного. В другой раз он глядел на солнце, пока мог выдержать, чтобы узнать, как это отразится на его зрении. И вновь он избежал серьезных повреждений, хотя пришлось провести несколько дней в затемненном помещении, пока глаза не простили ему его опытов.

Но над всеми этими странностями и причудами властвовал интеллект гения, – даже действуя в обычном русле, Ньютон зачастую проявлял странные особенности. В студенческие годы, разочарованный ограниченными возможностями традиционной математики, он придумал совершенно новую ее форму – дифференциальное и интегральное исчисление, но молчал об этом целых двадцать семь лет. Подобным же образом он работал в области оптики, изменив наши представления о свете и заложив основы спектрографии как науки, и опять же решил не делиться результатами своих работ в течение трех десятилетий.

При всех его талантах настоящая наука составляла лишь часть его интересов. По крайней мере половину своего рабочего времени он отдавал алхимии и неортодоксальным религиозным поискам. Это были не просто дилетантские занятия, а серьезные увлечения, которые полностью его захватывали. Он был тайным приверженцем ереси, известной как арианство, отличительной особенностью которой было отрицание Святой Троицы[60] (по иронии судьбы в Кембридже Ньютон принадлежал к колледжу Святой Троицы). Он проводил бесконечные часы за изучением поэтажного плана храма царя Соломона в Иерусалиме (попутно осваивая иврит, чтобы разбирать подлинные тексты), будучи убежден, что в нем содержится математический ключ к определению даты второго пришествия Христа и конца света. С не меньшим рвением он относился к алхимии. В 1936 году экономист Джон Мейнард Кейнс[61] купил на аукционе саквояж с бумагами Ньютона и, к своему удивлению, обнаружил, что в подавляющем большинстве они относились не к оптике или движениям планет, а свидетельствовали о целеустремленных поисках способа превращения обычных цветных металлов в драгоценные. При химическом анализе пряди волос Ньютона в 1970 году была обнаружена ртуть – элемент, представлявший интерес для алхимиков, шляпных мастеров, изготовителей барометров и, пожалуй, больше ни для кого – причем концентрация ртути раз в сорок превышала естественный уровень. Поэтому не слишком удивительно, что по утрам он забывал встать с постели.

Что рассчитывал узнать у него Галлей во время своего не оговоренного заранее визита в августе 1684 года, можно только догадываться. Но благодаря более поздним воспоминаниям доверенного лица Ньютона Абрахама де Муавра у нас есть описание этой встречи – одной из самых важных для истории науки.

В 1684 году в Кембридж приезжал д-р Галлей [и] после некоторого общения спросил сэра Исаака, что, по его мнению, будет представлять кривая, образуемая планетами, если предположить, что сила притяжения к Солнцу будет обратна квадрату их расстояния до него.

Это была ссылка на математическое понятие, известное как закон обратных квадратов, который, как был твердо убежден Галлей, лежал в основе объяснения, но ему было не вполне ясно, как это показать.

Сэр Исаак сразу же ответил, что это будет [эллипс]. Доктор страшно обрадовался и с удивлением спросил, откуда ему это известно. «Обоснование? – ответил тот. – Я это вычислил». Д-р Галлей сразу попросил показать эти вычисления. Сэр Исаак поискал у себя в бумагах, но не нашел.

Поразительно – все равно что сказать, что нашел лекарство от рака, а потом забыл, куда положил формулу. По настоянию Галлея Ньютон согласился заново сделать расчеты и опубликовать статью. Он выполнил обещание, а потом сделал куда больше. Уединившись на два года напряженных размышлений, он наконец произвел на свет свой шедевр: Philosophiae Naturalis Principia Mathematica, или «Математические начала натуральной философии», более известный как «Начала» Ньютона.

Крайне редко, всего несколько раз в истории, человеческий ум делал наблюдения до того проницательные и неожиданные, что трудно решить, что здесь более поразительно – сам факт или постигшая его мысль. Появление «Начал» было одним из таких моментов. Благодаря им Ньютон мгновенно стал знаменитым. До конца своих дней он купался в почестях, став, среди прочего, первым лицом в Англии, удостоенным рыцарского звания за научные заслуги. Даже великий немецкий математик Готфрид фон Лейбниц, с которым у Ньютона шла долгая ожесточенная борьба за приоритет в создании дифференциального и интегрального исчисления, считал, что вклад Ньютона в математику равен всему накопленному до него. «Ближе к богам не может стоять ни один смертный», – писал Галлей, выражая чувства, многократно отражавшиеся в настроениях его современников и множества других людей впоследствии.

Хотя «Начала» называли «одной из самых недоступных для понимания среди когда-либо написанных книг» (Ньютон намеренно сделал ее трудной, чтобы на ней не паразитировали математические «верхогляды», как он их называл), она служила путеводной звездой тем, кто сумел ее понять. В ней не только математически объяснялись орбиты небесных тел, но и определялась притягивающая сила, в первую очередь ответственная за их движение, – гравитация. Каждое движение во Вселенной вдруг обрело смысл.

В основе «Начал» лежат три закона механики Ньютона (которые утверждают предельно четко, что тело ускоряется в том направлении, в котором получает толчок; что оно будет двигаться равномерно и прямолинейно до тех пор, пока другая сила не замедлит или не отклонит его, и что каждое действие встречает противоположно направленное и равное по силе противодействие) и его закон всемирного тяготения. Он устанавливает, что каждое тело во Вселенной притягивает к себе все другие. Может показаться, что это не так, однако, сидя там, где вы сидите сейчас, вы притягиваете к себе все, что вас окружает: стены, потолок, лампу, любимую кошку, – своим слабым (действительно очень слабым) гравитационным полем. Именно Ньютон осознал, что притяжение двух тел, пользуясь снова словами Фейнмана, «пропорционально массе каждого из них и изменяется обратно пропорционально квадрату расстояния между ними». Иными словами, если удвоить расстояние между двумя телами, притяжение между ними уменьшится в четыре раза. Это можно выразить формулой:

F = GMm/r²,

которая, разумеется, для большинства из нас не представляет никакого практического значения, но мы по крайней мере можем оценить ее изящество и лаконичность. Пара несложных умножений, простое деление, и – бинго! – вы знаете свое гравитационное состояние, где бы вы ни находились. Это был первый по-настоящему всеобщий закон природы, постигнутый и сформулированный человеческим умом. Потому Ньютон всюду пользуется таким глубоким уважением.

Издание «Начал» не обошлось без драмы. К ужасу Галлея, когда труд приближался к завершению, Ньютон с Гуком ввязались в спор о приоритете в отношении закона обратных квадратов, и Ньютон отказался отдавать в печать ключевой третий том, без которого в первых двух оставалось мало смысла. Только посредством отчаянной челночной дипломатии и щедро расточавшейся лести Галлею в конце концов удалось добыть у непредсказуемого профессора заключительный том.

Но на этом беды Галлея не закончились. Королевское общество[62], обещавшее издать этот труд, теперь вышло из игры, сославшись на финансовые затруднения. Годом раньше общество поддержало издание дорогостоящей и с треском провалившейся книги «История рыб» и полагало, что книга о математических началах тоже едва ли будет пользоваться спросом. Галлей, чьи средства были не так уж велики, заплатил за издание книги из своего кармана. Ньютон по свойственной ему привычке не дал ничего. И в довершение ко всем неприятностям Галлею, только что согласившемуся занять должность секретаря общества, сообщили, что общество больше не в состоянии платить ему обещанное жалованье – 50 фунтов стерлингов в год. Вместо этого ему заплатили экземплярами «Истории рыб».

Законы Ньютона объясняли такое множество вещей – морские приливы и отливы, движения планет, траекторию пушечных ядер, прежде чем они упадут на землю, и почему при вращении нашей планеты со скоростью в сотни километров в час[63] нас не выбрасывает в космическое пространство, – что потребовалось какое-то время, чтобы постепенно осмыслить их значение. Но одно открытие почти сразу вызвало споры.

Это было предположение о том, что Земля не совсем круглая. Согласно теории Ньютона, центробежная сила вращения Земли должна приводить к появлению небольшого сжатия у полюсов и выпуклости у экватора, отчего планета должна стать слегка сплющенной. Это означало, что длина градуса меридиана в Италии не будет такой же, как в Шотландии. А именно, эта длина будет умень шаться по мере удаления от полюсов. Эта идея вряд ли пришлась по вкусу тем ученым, чьи измерения размеров планеты строились на предположении, что она представляет собой идеальный шар, а так думали все.

Полстолетия люди пытались определить размеры Земли, главным образом путем весьма скрупулезных измерений. Одна из первых попыток такого рода была предпринята английским математиком Ричардом Норвудом. В молодости Норвуд ездил на Бермуды с водолазным колоколом, изготовленным по проекту Галлея, намереваясь сбором жемчуга на морском дне составить состояние. Проект закончился неудачей, потому что жемчуга там не оказалось, к тому же колокол Норвуда не работал, однако Норвуд был не из тех, кто пренебрегает приобретенным опытом. В начале XVII века Бермуды славились среди капитанов тем, что их было трудно отыскать. Дело в том, что океан велик, Бермуды малы, а навигационные приборы были абсолютно непригодны для преодоления этой несоразмерности. Не было даже согласия относительно длины морской мили. На океанских просторах малейшая ошибка в расчетах многократно возрастала, так что корабли часто очень сильно промахивались мимо целей величиной с Бермуды. Норвуд, первой любовью которого была тригонометрия, а значит, и измерение углов, решил привнести в навигационное искусство долю математической точности и с этой целью взялся определить длину градуса.

Отправившись от стен лондонского Тауэра, Норвуд за два года самозабвенно прошагал 333 километра на север до Йорка, по пути бесчисленное множество раз растягивая мерную цепь и педантично делая поправки на подъемы, спуски и изгибы дороги. Последним шагом было измерение высоты Солнца в Йорке в то же время дня и в тот же день года, когда он сделал первое измерение в Лондоне. Исходя из этого, рассуждал он, можно определить длину одного градуса земного меридиана и тем самым вычислить длину всей окружности. Это была почти абсурдная по своей амбициозности затея – ошибка в малейшую долю градуса исказила бы результат на много миль, – однако на деле оказалось, как с гордостью провозгласил Норвуд, что он измерил градус с точностью «до щепотки», а если точнее, то приблизительно до пятисот метров. Итоговая величина составляла 110,72 километра на градус меридиана.

В 1637 году вышел в свет шедевр Норвуда в области навигации «Практическое руководство морехода», книга, немедленно ставшая популярной. Она выдержала семнадцать изданий и продавалась даже спустя двадцать пять лет после смерти автора. Норвуд с семьей вернулся на Бермуды, где стал преуспевающим плантатором, а свободные часы отдавал своей первой любви – тригонометрии. Он прожил там тридцать восемь лет, и было бы приятно сообщить, что дни его протекали в счастье и благоденствии. На деле жизнь сложилась не так. По пути из Англии двоих его юных сыновей поместили в одну каюту с преподобным Натаниэлом Уайтом, и они каким-то образом до того травмировали молодого священника, что тот до конца своей карьеры практически занимался только тем, что досаждал Норвуду любыми мелкими пакостями, на какие только был способен.

Лишние огорчения причинили Норвуду и двое дочерей своими неудачными замужествами. Один из зятьев, возможно по наущению того самого священника, постоянно по мелочам подавал на Норвуда в суд, вызывая большое раздражение и вынуждая совершать бесконечные поездки по Бермудам для защиты в суде. Наконец, в 1650-х годах до Бермуд докатились суды над ведьмами, и последние годы жизни Норвуд провел в страшной тревоге, что его труды по тригонометрии с их загадочными символами сочтут за связи с дьяволом и его подвергнут страшной казни. О Норвуде известно крайне мало, возможно, он действительно заслужил все эти несчастья на склоне лет. Но со всей определенностью можно лишь утверждать, что он их испытал.

Тем временем интерес к определению длины окружности Земли переместился во Францию. Там астроном Жан Пикар разработал поразительно сложный метод триангуляционной съемки с применением квадрантов, маятниковых часов, зенитных секторов[64] и телескопов (для наблюдения за движением спутников Юпитера). В 1669 году, после двухлетних разъездов по всей Франции и триангуляционных съемок по своему методу, он объявил уточненный размер одного градуса меридиана – 110,46 километра. Это стало источником великой гордости для французов, но результат основывался на предположении, что Земля представляет собой идеальный шар, а Ньютон теперь утверждал, что это не так.

Положение еще более осложнилось, когда после смерти Пикара Джованни и Жак Кассини, отец с сыном, повторили его эксперименты на большей площади и пришли к выводу, что Земля становится толще к полюсам, а не к экватору – другими словами, что Ньютон ошибался с точностью до наоборот. Именно это обстоятельство подтолкнуло Академию наук послать Буге и ла Кондамина в Южную Америку для новых измерений.

Они выбрали Анды, потому что требовалось проводить измерения близ экватора, дабы определить, действительно ли здесь имеется отличие в кривизне земной поверхности, и потому что они полагали, что в горах видимость будет лучше. На деле же оказалось, что горы в Перу постоянно окутаны облаками, и группе приходилось неделями ждать ясного часа для проведения работ. И в довершение всего они выбрали почти самую труднопроходимую местность на Земле. Перуанцы называют свой ландшафт muy accidentado – сильно изорванным, – и он, вне всякого сомнения, именно такой. Французам пришлось карабкаться по одним из самых трудных в мире горам, – горам, которые не могли одолеть даже их мулы, – но чтобы добраться до них, пришлось переправляться через бурные реки, прорубаться через джунгли, пересечь протянувшуюся на много миль высокогорную каменистую пустыню, и почти все это не было нанесено на карты и находилось вдали от каких-либо источников снабжения. Но Буге и ла Кондамину настойчивости было не занимать, и они упорно выполняли поставленную перед ними задачу на протяжении девяти с половиной долгих, суровых, опаленных солнцем лет. Незадолго до завершения проекта до них дошла весть, что другая французская группа, проводившая измерения на севере Скандинавии (и тоже столкнувшаяся с серьезными препятствиями от болотных трясин до опасных ледяных торосов), обнаружила, что ближе к полюсам градус действительно длиннее, как и предсказывал Ньютон. Земля оказалась на 43 километра толще, если измерять ее на экваторе, чем при измерении сверху вниз – от полюса к полюсу.

Назад Дальше