В неклассической теории катализа принимается и объясняется факт изменения катализатора, например в теории активных ансамблей Н. И. Кобозева катализатор понимается как энергетическая ловушка – агграватор, поглощающий энергию реакции. По мере усложнения катализатора его активность возрастает по экспоненциальному закону[15].
Изменения катализатора энергетически связаны с превращением вещества, стабилизируются энергией реакции (стационарный режим). Вне химической реакции катализатор не существует. Точно так же и определенный механизм химического реагирования связан с определенным катализатором.
Исследование изменений катализатора, сопряженных с энергией базисной реакции, и последующего перехода катализатора к стационарному состоянию в некоторых определенных условиях позволило утверждать, что химический процесс фактически сам для себя создает условия протекания[16].
Катализатор – это не особый класс химических веществ, а функция химического вещества в процессе. Таким образом, катализатор и реакция, протекающая при его участии, может быть понята как единая открытая каталитическая система – качественно новая форма существования вещества.
Анализируя многообразные факты саморазвития химического вещества, наблюдаемые в реальных каталитических актах, А. П. Руденко разработал теорию саморазвития открытых элементарных каталитических систем. Его исследования были связаны с качественным изменением оснований химической науки. Новой, неклассической химией стала химия эволюционного катализа, изучающая условия и закономерности химической эволюции вещества.
Элементарная открытая каталитическая система – это целостный, неделимый в функциональном отношении объект, кинетический континуум. Каталитическая система открытая, так как условием ее существования является непрерывный обмен веществ и энергии с окружающей средой. Деструктивный процесс поступающих извне веществ, осуществляемый системой, поддерживает ее организацию и способствует изменениям.
Элементарная открытая каталитическая система – временное образование, поскольку существует за счет работы химического процесса против сил теплового равновесия.
Элементарный химический состав и химическое строение сами по себе не позволяют охарактеризовать поведение кинетического континуума, если они не связаны с эволюционно значимыми изменениями системы – изменениями ее каталитической активности[17]. Для химии эволюционного катализа особенно важны факты многократного изменения природы катализаторов, связанные с изменением каталитических свойств.
Основной закон химической эволюции, по мнению А. П. Руденко, связывает вероятность последовательных изменений каталитических систем с прогрессивностью эволюционных изменений. Теория саморазвития открытых каталитических систем исследует возможность, направленность эволюционных изменений, а также пределы и основные этапы химической эволюции.
Этапы эволюционных изменений ограничиваются пределами развития каталитических систем. А. П. Руденко выявляет пределы саморазвития, анализируя физико-химические формы проявления основного закона эволюции в конкретных условиях осуществления эволюционного процесса. Всего он обнаруживает три предела развития: вероятностный и два кинетических[18]. Его анализ позволяет обосновать возможность существования определенных этапов химической эволюции и предсказать последовательность смены этих этапов. Преодоление пределов саморазвития каталитических систем сопровождается качественными изменениями их организации и функций, появлением новых эволюционно значимых характеристик.
Он предсказывает существование общего предела саморазвития открытых каталитических систем, преодолевая который химическая эволюция дает начало биологической эволюции. В результате преодоления общего предела саморазвития (второй кинетический, концентрационный предел) у эволюционирующей системы появляется свойство точной пространственной редупликации сложных открытых каталитических систем. Химическая система превращается в живую систему. Жизнь – это способная к самовоспроизведению открытая система. Этим качеством самоорганизация живой системы отличается от самоорганизации открытой химической системы.
По мнению А. П. Руденко, теория саморазвития элементарных открытых каталитических систем дает ценный в научном отношении материал проявления простейших, фундаментальных принципов самоорганизации на химическом уровне материального взаимодействия, что может быть важным вкладом в разработку общей теории самоорганизации.
Ученый предлагает различать два типа самоорганизации: континуальную и когерентную. Самоорганизация элементарной открытой каталитической системы совершается по континуальному типу. Название типа самоорганизации происходит от понятия «кинетический континуум». Главным условием самоорганизации данного типа является неравновесность. Источником самоорганизации является полезная работа против равновесия, совершаемая за счет обмена веществ и энергии открытой системы.
Когерентный тип самоорганизации исследовал Г. Хакен. Когерентность означает кооперированное взаимодействие в макросистеме. Предполагая, что данный тип самоорганизации универсален, Г. Хакен называет теорию самоорганизации синергетикой. Однако и теория диссипативных структур, и синергетика не исследуют континуальный тип самоорганизации, тем более саморазвитие континуальной самоорганизации. Следовательно, ни теория диссипативных структур, ни синергетика не являются универсальными теориями самоорганизации. Таково мнение А. П. Руденко. Независимо от А. П. Руденко к аналогичному выводу пришел В. Эбелинг. Он утверждает, что самоорганизация когерентного типа «не является универсальным свойством материи, а существует лишь при особых внутренних и внешних условиях; вместе с тем это свойство не связано с каким-то особым классом веществ»[19]. Самоорганизация структур возможна в условиях, когда отдача энтропии превысит некоторое критическое значение.
Преимущества континуальной теории самоорганизации очевидны. А. П. Руденко не только объясняет существование элементарной, в функциональном отношении неделимой, открытой системы – кинетического континуума, но разрабатывает математический аппарат теории саморазвития элементарных открытых каталитических систем, количественно характеризуя прогрессивную химическую эволюцию вплоть до возникновения жизни. Таким образом, теория А. П. Руденко в отличие от синергетики Г. Хакена включает не только континуальный тип самоорганизации, но и когерентный, является действительно общей теорией.
Источником терминологической путаницы в области понимания самоорганизации у представителей социально-гуманитарных наук, а также математических школ в области синергетики, по мнению А. П. Руденко, является абстрагирование от физической сущности процессов организации и самоорганизации. Вследствие этого самоорганизацией называют любые процессы упорядочения элементов системы, протекающие самопроизвольно.
Фактический материал современной химии позволяет выделить два типа объектов: с равновесной и неравновесной организацией. Объекты с равновесной организацией были предметом классической химии. Классическая химия абсолютизировала дискретные формы бытия химического вещества. Некоторые из этих форм имеют молекулярное строение, другие являются комплексными соединениями, сэндвичевыми соединениями и прочее, но все они стабильны во времени. Стабильность этих веществ не безусловная, а относительная. Условием их неизменности является постоянство температуры. Кристаллическая форма вещества также является объектом с равновесной организацией. Квантовая механика объясняет стабильность организации системы ядер и электронов. Равновесное упорядочение некоторой системы может быть получено экспериментально в ходе самопроизвольно протекающего процесса, стремящегося к равновесию и сопровождающегося выделением энергии.
Объекты с неравновесной организацией – это, например, элементарные открытые каталитические системы – предмет химии эволюционного катализа. Эти системы поддерживают свою организацию в стационарном состоянии за счет обмена веществ и энергии с окружающей средой.
А. П. Руденко предлагает термином «самоорганизация» обозначить неравновесное упорядочение, а термином «организация» упорядочение равновесного типа. Эти типы упорядочения имеют общие свойства, которые, как правило, ошибочно приписывают всем самоорганизующимся системам. Ошибок и терминологической путаницы можно избежать, если ясно понимать физические основы самоорганизации[20].
Самоорганизация как неравновесное упорядочение является всеобщим условием существования любых материальных систем. А. П. Руденко обобщил исследования процессов самоорганизации открытых химических систем. Исследование биологических систем в XX веке под термодинамическим углом зрения позволило понять, что они существуют, поддерживают организацию процессов, называемых жизнью, благодаря обмену веществ и энергии с окружающей средой. Карл Маркс в «Капитале» характеризует труд как «всеобщее условие обмена веществ между человеком и природой, вечное естественное условие человеческой жизни, и потому он не зависим от какой бы то ни было формы этой жизни, а, напротив, одинаково общ всем её общественным формам…»[21].
Наука оперирует понятиями «открытая система», «закрытая система», онтологизирует данные абстракции. Но могут ли действительно существовать закрытые системы? Могут ли быть объекты, чье существование ничем не обусловлено, могут ли быть не взаимодействующие формы бытия? Очевидно, что закрытая система – это конструкция познающего разума, характерная для классической науки. В действительности вне взаимодействия формы материального бытия – вещи – существовать не могут, и в этом смысле они всегда открыты.
В материальном взаимодействии вещи не только существуют, но и возникают. Любая вещь, возникнув, формирует обратную связь, превращая условия генезиса в условия своего существования, тем самым осуществляется процесс самоорганизации вещи как системы. Это общий принцип самоорганизации систем.
Однако известно, где имеет место процесс превращения вещества и энергии, там действуют законы термодинамики. В качественной формулировке первый закон утверждает, что энергия не может быть создана или уничтожена, она переходит из одной формы в другую. Второй закон говорит о невозможности существования вечного двигателя второго рода, то есть ни одна форма бытия не может осуществлять работу за счет теплоты окружающей среды. Не означает ли это, что только термодинамика может объяснить как из хаоса рождается порядок? Термодинамика биологических процессов, биофизика казалось бы тому лучшее подтверждение.
Термодинамический подход не учитывает не только специфику материальных систем, но и специфику вещества и энергии, посредством которых системы взаимодействуют. Не существует универсального вещества и энергии, которые можно было использовать любым системам. Самоорганизация системы требует вполне определенных форм вещества и энергии. Таким образом, необходимое для существования вещество и энергию материальная система берет не просто из окружающей среды, а из другой системы. Строит себя из материала другой системы, разрушая тем самым ее организацию.
Данное обстоятельство обосновывается не только исходя из общих положений о материальном взаимодействии, но и имеет научное подтверждение. Биохимики в XX веке обнаружили химическую асимметрию живого. Биологически активные молекулы имеют определенное пространственное строение. Так, в состав белков живых организмов входят практически исключительно L(+)аминокислоты, а ДНК и РНК построены на основе D(–)углеводов. А это значит, что организмы, содержащие в составе белков аминокислоты, вращающие плоскость поляризованного света влево, не могут употреблять в пищу аминокислоты, вращающие плоскость поляризованного света вправо. Если бы не данное обстоятельство, мы бы уже питались синтетической пищей. В процессе химического синтеза образуется смесь стереоизомеров, разделение которой на отдельные вещества – трудная задача. Ферментативный синтез в организме дает нужный биологически активный стереоизомер.
Если живая система может использовать только организованную форму вещества и энергии, то это же самое имеет место и в других системах. В этом выражается общий принцип самоорганизации систем: любая система, возникнув, воспроизводит условия, породившие ее, превращает их в условия существования. Для живых систем это означает воспроизводство собственной жизни.
Возможно, самопроизвольность процессов, сопровождающихся увеличением энтропии, о чем говорит второй закон термодинамики, относительна, так как обратной стороной этих процессов является особое взаимодействие, связанное с самоорганизацией систем, осуществляемое за счет вещества и энергии, извлекаемое из других систем. Смертью друг друга они живут, жизнью друг друга они умирают. Энергия в этом процессе переходит из одной формы в другую. Тем самым мы имеем не дуализм организации и самоорганизации, о чем пишет А. П. Руденко[22], а процесс самоорганизации в материальном взаимодействии, в котором одна форма бытия превращается в условия существования другой формы бытия.
Исследование самоорганизации живых систем с точки зрения воспроизводства условий существования жизни позволяет глубже понять системный характер живого. В нашем эмпирическом опыте жизни мы имеем дело с многообразием различных форм живого. Но если учесть, что исторически первым делом жизни является воспроизводство самой жизни, то очевидно, что многие формы живых организмов не способны самостоятельно воспроизводить свою материальную жизнь без взаимодействия с другими живыми организмами. Самостоятельно существовать могут только продуценты органического вещества в биосфере – автотрофы. Следовательно, система живого – это не отдельный организм, а биосфера.
Разумная форма жизни – это не отдельный человек, а система общественного производства материальной жизни. В письме к Л. Кугельману К. Маркс, разъясняя суть закона стоимости, писал: «Всякий ребенок знает, что каждая нация погибла бы, если бы она приостановила работу не то что на год, а хотя бы на несколько недель. Точно так же известно всем, что для соответствующих различным массам потребностей масс продуктов требуются различные и количественно определенные массы общественного совокупного труда. Очевидно само собой, что эта необходимость распределения общественного труда в определённых пропорциях никоим образом не может быть уничтожена определенной формой общественного производства, – измениться может лишь форма ее проявления. Законы природы вообще не могут быть уничтожены»[23].
Такие понятия, как «биосфера», «общественное производство материальной жизни», обозначают системы, целостность которых нам непосредственно не дана и научное понимание ее требует особого методологического подхода. Теории самоорганизации отводится сегодня ведущая роль в исследовании систем органической целостности.
Однако распространение идей термодинамики неравновесных систем, а также синергетики на биологические и социальные объекты позволило обнаружить ограниченность в целом термодинамического подхода, а следовательно, и ограниченность термодинамического понимания самоорганизации.
Энтропийные изменения (принцип П. Гленсдорфа и И. Пригожина) не позволяют охарактеризовать направленность эволюционных изменений биологических системам, а также недостаточны для исследования биохимических процессов. Например, «поглощение кислорода на единицу массы, которое может служить мерой интенсивности метаболических процессов, у инфузорий (парамеций) такое же, как и у собаки», «механическая работа совершается человеком или лошадью с КПД всего 20 % от энергии поглощаемых пищевых продуктов, и ясно, что не эта достаточно низкая величина определила высокое эволюционное положение этих организмов»[24].