Александр Хренников, Юрий Любарский
Использование элементов искусственного интеллекта: компьютерная поддержка оперативных решений в интеллектуальных электрических сетях
ПРЕДИСЛОВИЕ
В учебном пособии под интеллектуальными электрическими сетями понимаются такие электросети, для управления которыми используются программные средства, основанные на методах искусственного интеллекта (ИИ). Рассматривается, в основном, управление «через человека» – диспетчерское управление. Интеллектуальные программы при таком подходе обеспечивают компьютерную поддержку диспетчерских решений. Это ни в коей мере не исключает других возможных применений ИИ в электросетях, но эти возможности остаются за рамками данного пособия.
Для «интеллектуальных» электрических сетей рассмотрены основанные на методах ИИ программные средства, выполняющие новые функции и повышающие уровень компьютерной поддержки диспетчерских решений.
Учитывая, что одна из целей построения интеллектуальных сетей – обеспечение восстановления после аварий, основное внимание в книге уделяется проблемам диагностики нештатных ситуаций, интеллектуальному мониторингу состояний электрических сетей, планированию послеаварийного восстановления электроснабжения. Подробно рассмотрен новый вид программного тренажера для диспетчеров электрических сетей – тренажер анализа нештатных ситуаций.
В рамках использования ИИ рассмотрена многоагентная структура интеллектуальной автоматизированной структуры диспетчерского управления.
Рассмотрена также задача анализа аварий и возможность формирования (на основе данных оперативно-информационного комплекса) оперативной справки об аварии в энергосистеме.
Рассмотрена организация расследований технологических нарушений и аварий на подстанциях (с примерами протоколов расследования).
Вводится понятие «объемного» принятия решений, отражающее участие в принятии решений групп специалистов, обладающих различными компетенциями. При этом используется концепция экспертной системы с «доской объявлений».
Для облегчения преобразования эксплуатационного опыта технологов в формализмы естественно-языковой экспертной системы рассмотрена возможность применения концепции экстремального программирования.
Для определенности при изложении в данном пособии предполагается применение экспертной системы (оболочки) МИМИР, так как эта система имеет ряд успешных применений в электроэнергетических задачах.
Изложение в книге сопровождается множеством примеров в форме протоколов работы реальных интеллектуальных систем.
Учебное пособие предназначено для студентов магистратуры электроэнергетических специальностей, обучающихся по направлению «Электроэнергетика и электротехника» и магистрантов направления «Электроэнергетика и электротехника», профили «Электроэнергетические системы и сети» при изучении дисциплины «Информационно-измерительные системы», специалистов технических оперативных служб предприятий энергетических систем, электрических и распределительных сетей и электрических станций, филиалов ПАО «Россети», ПАО «ФСК ЕЭС», слушателей курсов повышения квалификации, а также студентов электроэнергетических специальностей. служб предприятий электрических и распределительных сетей и электрических станций, слушателей курсов повышения квалификации электроэнергетического профиля. Севастопольского госуниверситета и ряду других специализаций. Пособие соответствует также специализациям «Активно-адаптивные системы электроснабжения» СПбПУ Петра Великого 2.13.04.02 Интеллектуальные системы энергоснабжения.СС
Глава 1. ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ ПОДДЕРЖКИ ДИСПЕТЧЕСРСКИХ РЕШЕНИЙ
1.1.ПРОБЛЕМЫ РАЗРАБОТКИ СОВРЕМЕННЫХ ИНФОРМАЦИОННЫХ СИСТЕМ ЭНЕРГЕТИЧЕСКОГО ПРИМЕНЕНИЯ
ПОСТАНОВКА ЗАДАЧИ
Важной задачей модернизации систем компьютерной поддержки оперативных энергетических задач является автоматизация функций технологического управления в энергосистемах. Разработки в этой области часто оказываются весьма трудоемкими и не всегда успешными. Результаты работы существенно зависят от правильного анализа источников знаний и от выбора методов реализации. Здесь конкурируют «традиционные» программные методы и методы, основанные на идеях искусственного интеллекта. При этом далеко не всегда «интеллектуальные» методы оказываются предпочтительными – иногда их применение может привести к излишнему усложнению разрабатываемой системы. С другой стороны, «традиционные» методы могут затруднить разработку продуктов, приемлемых для использования технологами – «эксплуатационниками». Поэтому важно на раннем этапе разработки для конкретной задачи правильно выбрать метод реализации, оценить целесообразность «ставки» на интеллектуальный метод [3,38].
ИСТОЧНИКИ ЗНАНИЙ
Приступая к разработке автоматизированной системы для новой технологической задачи, необходимо определить источники знаний (ИЗ) об этой задаче. Среди множества возможных ИЗ наибольший интерес для разработчика представляют:
– эксплуатационный опыт ЭО,
– техническое задание ТЗ на разработку,
– эксплуатационные инструкции ЭИ,
ЭО – опыт эксплуатационного персонала, постоянно «в уме» решающего задачу, которую нужно автоматизировать. К сожалению, это часто невербальный (не зафиксированный в текстах) опыт. Его преобразование в словесную форму – очень трудоемкий процесс.
Выбор ТЗ в качестве основного источника был бы идеальным, но, к сожалению, в таких документах часто нет необходимой полноты информации, содержатся противоречия.
Наконец, ЭИ (технологические инструкции, указания и т.п.) – регламентированные документы являются, безусловно, достоверным источником знаний, но как правило, источником существенно неполным, фрагментарным: регламентированные инструкции обычно охватывают только некоторые (пусть и важнейшие) эксплуатационные операции, состояния и пр., в то время, как для разработки системы требуется «полный спектр» таких знаний. Пробелы в ЭИ разработчику системы приходится заполнять «здравым смыслом», то есть тем же эксплуатационным опытом. Поэтому следует признать опыт эксплуатационного персонала основным источником знаний для разрабатываемой системы [1-9].
1.2.ТЕХНОЛОГИЧЕСКИЕ РАССУЖДЕНИЯ КАК ПРЕДМЕТ КАК ПРЕДМЕТ МОДЕЛИРОВАНИЯ
Для представления эксплуатационного опыта в разрабатываемой системе следует решить две задачи:
– выбрать формализм для представления ЭО,
– преобразовать невербальный опыт в рамки выбранного формализма.
При выборе формализма необходимо стремиться к максимальной его близости к «человеческим» представлениям. Этому требованию отвечает использование формализма рассуждения, понимаемого как ряд мыслей, суждений, умозаключений на какую-нибудь тему, изложенных в логически последовательной форме. Далее, полагаем, что эта цепочка суждений представляется в виде последовательности модулей-вопросов, каждый из которых состоит из:
– текста вопроса,
– анализа ответа.
Близость такого формализма к человеческим суждениям достигается тем, что вопросы формулируются на естественном языке человека.
Приведем примеры вопросов, используемых в некоторых реализованных системах.
(а) Система оперативного рассмотрения ремонтных заявок:
Заявки разрешенные, оборудование ЛЭП, сечения, оборудование уровень 500?
Запрашиваются разрешенные заявки на линии, которые входят в сечения, содержащие оборудование уровня 500 кВ.
(б) Система анализа нештатных ситуаций в электрических сетях:
(б1) оборудование шина объект *75, узлы, выключатели вкл.?
Запрашивается оборудование вида «шина», принадлежащее энергетическому объекту с номером *75, такое, что эти шины через электрические узлы связаны с выключателями, находящимися во включенном положении.
(б2) оборудование, узлы, выключатели, узлы, выключатели изменение?
Запрашивается оборудование, которое через электрические узлы присоединено к выключателям, которые, в свою очередь, через узлы присоединены к выключателям, положение которых изменилось.
В практических системах для решения задач одного вопроса, даже весьма сложного, оказывается недостаточно – в рассуждение входит множество иерархически организованных вопросов. Так, при распознавании ситуации «дальнего» резервирования [1] система сначала определяет «погашенные» шины подстанций и отключившиеся линии, затем – срабатывание защит на подстанции с погашенными шинами и на смежных присоединениях. Учитываются ступени сработавших защит линий. На подстанции, где имелось повреждение, вызвавшее ситуацию дальнего резервирования, защита работает первой ступенью, а на смежных подстанциях – более старшими ступенями.
В системах, основанных на технологических рассуждениях, моделируются формализмы рассуждений. Для этого вопросы автоматически преобразуются в SQL-форму Базы данных, выстраиваются цепочки модулей-запросов. Результатом является модель, называемая программой-рассуждением ПР. В практических информационных системах может быть несколько ПР, а количество вопросов в каждой ПР может достигать сотен. Таким образом, при реализации системы требуется
– преобразовать эксплуатационный опыт в формализмы рассуждений,
– преобразовать эти формализмы в множество программ-рассуждений [9-14].
1.3. СПЕЦИАЛИЗАЦИЯ РАЗРАБОТЧИКОВ
Рассмотрим вопрос формирования коллектива разработчиков информационной системы. При «традиционном» методе разработки требуется коллектив квалифицированных программистов, учет технологического содержания осуществляется на основе ТЗ.
При интеллектуальном методе разработки для создания формализмов рассуждений обязательно требуется привлечь к работе компетентного в решении данной задачи представителя эксплуатационного персонала. К сожалению, обычно таких специалистов немого, они очень загружены своими текущими делами, время, которое они могут уделить разработчикам системы весьма дефицитно. Поэтому при разработке интеллектуальных систем появляется новый «персонаж» – специалист по знаниям СЗ. Интересно сравнить требуемую квалификацию СЗ с квалификацией традиционного программиста. Оказывается, что специалист по знаниям вовсе не должен владеть программированием, да и тонкости технологии – не его область. Специалист по знаниям должен знать, как устроены интеллектуальные системы, должен уметь содействовать эксперту-технологу в формализации его невербального опыта. В простых случаях можно надеяться, что эксперт сможет выполнить формализацию самостоятельно – ведь язык для формализации интуитивно понятен технологу. К сожалению, это редко бывает. Чтобы ускорить процесс формализации, можно применить схему «эксперт-посредник», при которой технолог общается с посредником (не знающим детали интеллектуального программирования, но сведущим в технологии), а посредник затем общается с СЗ, «растолковывая» ему технологические вопросы. Общение «Эксперт-технолог Посредник» занимает меньше времени, чем общение «Эксперт-технологСЗ», и хотя возникает «лишний» этап «ПосредникСЗ», экономия дефицитного времени технолога «окупает» эти затраты. Описанные выше взаимодействия разработчиков иллюстрирует рис.1.
При сравнении различных типов взаимодействия разработчиков нужно учитывать сложность внесения коррекций в уже разработанную систему. При вариантах Б и В такие коррекции даются относительно легко – требуется несколько изменить формализмы рассуждений: исключить некоторые рассуждения, ввести новые рассуждения, внести исправления в некоторые рассуждения, например, изменив тексты вопросов. Для варианта А коррекция значительно сложнее – придется исправлять обычные программы практически без участия экспертов-технологов.
1.4.ХАРАКТЕРИСТИКИ РАССУЖДЕНИЙ И ЦЕЛЕСООБРАЗНОСТЬ ПРИМЕНЕНИЯ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
Для принятия решения о выборе варианта разработки системы целесообразно на раннем этапе оценить сложность представления опыта эксплуатации в виде рассуждений. Введем некоторые общие характеристики системы, рассуждений, которую предстоит разработать:
а) глубина – количество последовательных уровней рассуждений,
б) разветвленность – количество ветвей в цепочках рассуждений,
в)структурная сложность – количество программ-рассуждений ПР необходимое для реализации системы.
Если представить систему рассуждений в виде графов, то, соответственно, речь идет об иерархических уровнях, количестве ветвей и количестве (условно несвязанных) графов. В наиболее простом случае а=1, б=1, в=1 получим систему где требуемая информация и условия ее поиска содержатся в Базе данных и может быть сразу найдена. Конечно, при таких условиях использовать интеллектуальные методы нецелесообразно.
Сложный случай рассмотрен в главе 4 – для распознавания ситуации дальнего резервирования потребуется более двух уровней графа рассуждений, общее количество графов больше одного (если считать операции со ступенями защит отдельным графом). Для решения таких задач использовать интеллектуальные методы целесообразно.
1.5.ПРИМЕРЫ РЕАЛИЗАЦИИ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ
Рассмотрим некоторые примеры реализации интеллектуальных систем, при разработке которых использовались изложенные выше методы.
1.Экспертная система ЭСОРЗ для оперативной режимной проработки ремонтных заявок на оборудование энергосистем [3.4] .Разработана ВНИИЭ с участием ЦДУ ЕЭС, внедрена в службе режимов ЦДУ. Просматривая нерассмотренные заявки, система выявляет множество ограничений, которые должны быть наложены на режим, причем выявляются ограничения, налагаемые как на время заявки, так и на время возможных коротких замыканий при коммутации выключателей. Определяются возможные противоречия с ранее разрешенными заявками. Результат – рекомендуемые решения по заявкам с множеством необходимых для разрешения заявки ограничений.
Реализация ЭСОРЗ потребовала сложных и разветвленных моделей рассуждений: рассуждения относительно заявок, относительно режимных ограничений, топологического анализа электрических схем для определения оборудования, отключаемого при коротких замыканиях.
Метод разработки ЭСОРЗ предполагал использование эксперта-посредника (вариант В). Этот вариант разработки оправдал себя: чрезвычайно загруженный текущей работой эксперт-технолог (оперативный работник службы электрических режимов) за минимальное время консультировал посредника, который затем уже за достаточно длительное время растолковывал инженеру по знаниям технологические сложности задачи.
2.Экспертая система ЭСПЛАН [9] для оперативного планирования ремонтов оборудования. Основное отличие от ЭСОРЗ – автоматическое перемещение плановых сроков ремонтов оборудования, так, чтобы при наложении ремонтов во времени не возникали противоречия. Таким образом, в этой системе время становится «активным участником» рассуждения.
3. Экспертная система ЛОК [5.6] для планирования поиска повреждений в распределительных электрических сетях, включая определение оптимальных траекторий движения ремонтных бригад. Сложность системы рассуждений для этой системы определяется необходимостью проводить не только топологический анализ электрических схем, но и выполнять геоинформационный анализ для траекторий.
4. Тренажер ТРАНС для анализа нештатных ситуаций в электрических сетях [7,8]. Эта система должна не только анализировать электрические схемы, но проводить достаточно сложные рассуждения относительно устройств релейной защиты и автоматики. Реализация в системе тренажерных функций требует отдельных рассуждений (см. главу 4).