Формально модель третьего этапа проста: создается копия совершенной финальной сети, прокладывается связь меду узлами оригинала и копии и запускает рост сети следующего ранга. Попробуем тем не менее без всякого ущерба для этого формализма создать наглядный образ (ни на что, впрочем, не претендующий) завершающего этапа роста сети и операции ее репликации.
Когда сеть 256 достигает совершенства – ее размер (число клаттеров в сети) становится равным весу клаттера Р (числу носителей в клаттере). Рассмотренный здесь алгоритм роста не может больше работать, т. к. все носители (кроме носителя, связанного с узлом клаттера) каждого клаттера сети оказываются задействованными на поддержание внутрисетевых связей. (Число связей клаттера совершенной сети не может быть увеличено, поэтому она и не может расти дальше.)
Приступаем к заключительному этапу. Прежде всего, добавляем по одной свободной связи узлу каждого клаттера, т. е. число связей клаттера становится равным числу носителей, в нем содержащихся. (Будем считать (постулируем), что максимально возможное число связей клаттера равно его весу.)
Но, что такое связь? Можно создать наглядный образ связи, который следует понимать только как метафору. Будем считать, что связь от носителя каждого клаттера через узлы всех клаттеров более низкого ранга, в порядке иерархии составляющих сетеобразующий клаттер, идет к его узлу, который соединяется связями через узел растущей сети с узлами других клаттеров. При этом узел клаттера и узел сети выступают в качестве «коммутаторов», обеспечивающих независимый обмен информацией между носителями сети.
Здесь предполагается, что каждый носитель может быть связан в данный момент времени только с каким-то одним носителем в своем и любом другом клаттере сети. Для сети 256 добавочная связь на каждый клаттер, даст дополнительно 256 связей более низкого уровня, а т. к. клаттеров всего 256, то получается 65536 связей. (Все эти 65536 связей пойдут на создание гиперсвязи, которая будет соединять клаттеры растущей сети четвертого ранга.)
И, наконец, СИС переходит в режим репликации. Рассмотрим его более подробно. На завершающем этапе роста длина звена, с которого собирается клаттер, становится равной двум. В процессе роста сети это число уменьшалось от 128 до 2. На последнем цикле дочерний клаттер копировался с двух, а в его конце – практически с одного материнского.
Поэтому логично считать продолжением этого процесса операцию репликации (перехода), во время которой звено копирования минимально и равно единице, т. е. операцию, в процессе которой происходит точное копирование «клаттер в клаттер», но с установкой копий носителей в новую в сеть. (Сам процесс построения копии сети из оригинала, а также их связь в ходе этого процесса – рассматривать здесь не будем.)
Операцию репликации можно считать последней, предельной операцией копирования сети данного ранга. Чисто теоретически она может состоять из некоторого количества циклов, в процессе которых итоговая СИС собирает одну, две или несколько собственных копий. Однако в дальнейшем всегда будем считать, что сеть, точно так же как живая клетка при делении, всегда создает лишь одну собственную копию.
Каждая из этих двух совершенных итоговых сетей, в рассмотренном нами примере, будет иметь 65536 свободных связей, две из которых пойдут на их соединение. Остальные понадобятся для дальнейшего роста сети четвертого ранга. В итоге сеть 256 увеличивает свой ранг на единицу и выходит на новый виток эволюции.
В заключение отметим следующее:
1. В математической модели клаттеры не обладают индивидуальностью, здесь не нужно рандомизировать их подачу на копирование для обеспечения эффективного кроссоверинга, достаточно только не копировать их дважды на первом витке.
2. При выборе алгоритма финализации звена и цикла на первом и на втором этапе роста важно, чтобы он обеспечивал прохождение всех гармонических стадий роста сети, т. е., чтобы сеть гармонического размера (с числом клаттеров, равным двойке в степени) собиралась в момент завершения цикла, а не где-то внутри него и, конечно же, этот алгоритм должен обеспечивать достижение сетью в финале совершенства.
Как показывает математическое моделирование, при выборе правила финализации звена и цикла предпочтение отдать следует третьему варианту, т. к. в этом случае на втором этапе гармонические стадии роста сети достигаются в моменты завершения циклов. Кроме того, выясняется, что при заданном алгоритме и при всех прочих сценариях финализации звена и цикла гармонические стадии оказываются удивительно притягательными для растущей сети. Следует также отметить, что число циклов, которое проходит сеть, с рангом большим трех, от одной точки своего роста до другой практически не зависит ни от выбора правила финализации звена на первом и втором этапе роста, ни от правила финализации цикла — на втором.
Рост сети 256
Рассмотрим рост сети 256 на первом этапе от 2-х клаттеров до 16-ти. Приведем пример программы подсчета числа клаттеров за цикл в зависимости от номера цикла, реализованной в системе MathCAD:
Рис. 1. Алгоритм роста сети 256 от 2-х клаттеров до 16-ти.
Здесь ceil(X) – ближайшее целое, большее или равное X; ce(X) – ближайшее целое, меньшее или равное X; cel(X) – ближайшее целое, меньшее X. Функция U(C) – это число клаттеров, собранных сетью за С циклов. Например, если U(133) = 7, то за 133 цикла собрано 7 клаттеров. C(2k) – номера циклов, соответствующие гармоническим стадиям роста сети.
Всего получается 156 циклов. Из них пустых 156 – 14 = 142. Соответственно, за каждый из оставшихся 14 циклов собирается один клаттер. Заходить на второй виток ни разу не приходилось. Сеть проходит четыре гармонические стадии роста: в момент старта, а также на 93-м, 134-м и 156-м цикле с числом клаттеров 2, 4, 8 и 16, соответственно. Переходим ко второму этапу.
Рис. 2. Алгоритм роста сети 256 от 16-ти до 256-ти клаттеров.
На этом этапе пройдено 15 циклов. Его начало сопровождается бурным ростом числа клаттеров. Это связано с тем, что на втором этапе за цикл с нуля собирается один или большее число клаттеров. Для реализации прохода через гармонические сети необходимо было скорректировать рост, но только в четырех точках «близких» к гармоническим сетям.
Каждая коррекция представляла собой малое возмущение в один клаттер и была проведена на стадиях роста с числом клаттеров 20, 31, 65 и 127: (127 + 1)·2 = 256, (31 + 1)·8 = 256, (65-1)·4 = 256. Существует не одна такая четверка, но результат, функция U(C), – остается тем же.
Растущая сеть проходит через гармонические стадии с размером: 16, 32, 64, 128, 256 клаттеров. На последнем цикле число клаттеров удваивается: U(14) = 128, U(15) = 256. Это справедливо для сетей любого ранга. Отметим также, что результаты работы алгоритма практически полностью совпадают со значениями следующей функции:
Рис. 3. Теоретическая гипербола сети 256.
Назовем функцию U1(i) теоретической гиперболой сети 256. Этап заканчивается сборкой клаттера 65536. И, наконец, третий этап роста сети 256 – репликация. Здесь сеть собирает свою копию и прокладывает связь между ней и оригиналом. Сеть 65536 может стартовать.
Подведем итоги для сети 256: всего имеется 156 + 15 = 171 цикл (без учета репликации) и восемь гармонических стадий роста с числом клаттеров 2, 4, 8, 16, 32, 64, 128, 256. Последняя гармоническая сеть с числом клаттеров 256 является также совершенной.
Рост сети 65536
Продолжая процесс, переходим к сети 65536. Первый этап – рост от 2-х клаттеров до 256-ти.
Рис. 1. Рост сети 65536 от 2-х клаттеров до 256-ти.
Всего сеть проходит 42142 цикла. Из них пустых 42142 – 254 = 41888. В 254 циклах собиралось по одному клаттеру. На второй виток, в соответствии с алгоритмом, заходить не приходилось.
Имеется восемь гармонических стадий роста: на старте и на 23666-м, 33543-м, 38046-м, 40197-м, 41261-м, 41812-м, 42142-м циклах с числом 2, 4, 8, 16, 32, 64, 128 и 256 клаттеров, соответственно.
Второй этап – рост от 256-ти клаттеров до 65536-ти.
Рис. 2. Рост сети 65536 от 256-ти клаттеров до 65536-ти.
Коррекция роста проведена в 21 точке. Все значения размеров сети, для которых проводилась коррекция М <− М+1, являются (или «почти» являются) делителями числа 65536, если к ним добавить единицу; например, 65536/(13106+1) = 5,000076. Вот частные, которые получаются в результате:
3, 4, 5, 8, 19, 32, 56, 67, 94, 122, 212, 214, 217, 222, 225, 229, 234, 240.
Такие коррекции одни из многих возможных, подобных им, но все они дают практически один и тот же результат, если придерживаться правила: при небольшом отклонении от гиперболической сети добавить в цикл один клаттер, т. е. держать курс на ближайшую гиперболическую сеть. Гиперболическая сеть – это сеть, размер которой равен ce(65536/N), где N > 256 – натуральное число.
Причем при увеличении М на единицу процесс устойчив и через некоторое количество циклов «садится» на гиперболу. При уменьшении М на единицу наблюдается неустойчивость, и процесс роста необратимо уходит от гармонических сетей.
Понадобилась одна коррекция в сторону уменьшения размера сети М: 328 <− 327 (65536/328 = 199.8), если ее не провести процесс срывается с гиперболы (последние три цикла 25501, 43735, 65537). Результаты работы алгоритма «почти точно» ложатся на теоретическую гиперболу сети 65536:
Рис. 3. Теоретическая гипербола сети 65536.
Гиперболический рост сети на первом и втором этапе представляет собой ускоряющийся неустойчивый процесс, требующий от управляющей системы двадцать пять коррекций. Неустойчивость роста понятна и из того факта, что уравнение Капицы, как асимптотический закон роста сети, устойчивых решений не имеет.
Составим таблицу зависимости числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы. Значения почти совпадают: максимальное отличие в три клаттера. В таблице выделены гармонические размеры сети.
Таблица 1. Зависимость числа клаттеров растущей сети от номера цикла для алгоритма и теоретической гиперболы.
Третий этап – операция репликации. Собираются копия сети, прокладывается связь между ней и оригиналом. Сеть 4 294 967 296 может стартовать.
Всего имеется 42142 + 255 = 42397 циклов (без учета репликации) и 16 гармонических стадий роста сети 65536. Сведем все данные в таблицы:
Таблица 2А. Подсчет номера цикла и числа клаттеров для гармонических сетей с размером, принадлежащем интервалу [257, 65536].
Таблица 2В. Зависимость числа клаттеров от номера цикла для гармонических размеров сети 65536.
Подсчет числа циклов роста сети любого ранга от двух клаттеров до совершенной
Для того, чтобы найти полное количество циклов, которое проходит сеть любого ранга в процессе своей эволюции, нужно сложить число этих циклов на трех этапах ее роста (считаем, что сеть любого ранга, став совершенной, создает единственную свою копию, на что уходит ровно два цикла[8] и рост сети следующего ранга всегда начинается с двух клаттеров.)
На втором и третьем этапе число циклов вычисляется с полной определенностью: корень квадратный из веса клаттера минус единица плюс два. Минус единица, т. к. алгоритм восьми шагов прекращает свою работу за шаг до сингулярности. И далее два цикла на переход. Получаем корень квадратный из веса клаттера плюс единица.
Наибольший вклад в количество циклов, пройденных сетью за время ее роста, дает первый этап. Причем для сетей, с рангом большим трех, число циклов на втором этапе гораздо меньше, чем на первом и им обычно можно пренебречь. Следовательно, наиболее важным представляется подсчет числа циклов на первом этапе.
И здесь нас подстерегает неоднозначность. Действительно, в приложении этой математики к процессу роста населения Земли время эволюции Сети человека на всех этапах ее роста должно исчисляться целым числом циклов. Поскольку на первом этапе копирование происходит звеньями проблема возникает с последним циклом звена, если вес клаттера не делится нацело на квадрат размера сети. Рассмотрим, например, рост сети четвертого ранга от трех клаттеров до четырех. Для сборки четвертого клаттера потребуется 65536/32 = 7281 и 7/9 цикла. Т. к. 7:3 = 2·3+1, четвертый клаттер будет собран после копирования первой позиции последнего, из стоящих в очередь на копирование, клаттера 7282-го цикла.
Т. к. звено замыкается здесь не в в момент завершения цикла, а у него внутри, то непонятно как округлять частное от деления веса клаттера на число носителей, которое копируется за цикл: с избытком, с недостатком или вообще не округлять? Возможны четыре варианта финализации звена на первом этапе:
1) Отдаем остаток последнему полному циклу или распределяем его по каким-то из предыдущих, при этом на некоторых из них будет скопировано число носителей больше планового (звено состоит из 7281 цикла в нашем примере).
2) Добавляем еще один цикл и переносим в него остаток (7 – в нашем примере) плюс некоторое число позиций, которые не будем копировать в текущем цикле (2 – в нашем примере); при этом носителей на последнем цикле будет скопировано меньше планового (звено состоит из 7282 циклов в нашем примере).
3) Этот вариант среднее между первым и вторым: если остаток меньше или равен половине квадрата размера сети идем по первому варианту, в противном случае – по второму (7281 или 7282 цикла в звене в нашем примере).
4) Есть еще один сценарий финализации звена, а именно: с перехлестом (без округления), когда следующее звено начинается внутри последнего цикла предыдущего звена с копирования его нескопированных носителей. Последний цикл текущего звена будет завершен здесь в начале следующего звена. В нашем примере сразу после копировании первой позиции последнего клаттера 7282-го цикла собираем четвертый клаттер и подключаем его к остальным. Начинаем следующее звено с копирования трех (2+1) позиций третьего клаттера и только тогда завершаем 7282-й цикл. Новоиспеченный четвертый клаттер в 7282-м цикле не копируем, а сразу начинаем новый цикл. Заметим, что последний цикл звена в этом случае не является (в любом из вариантов) формально циклом по определению, поскольку число скопированных позиций здесь либо больше, либо меньше квадрата размера сети.