Курс «Инженер по расчету и выбору регулирующей арматуры» - Горобченко Станислав Львович 6 стр.


Так как одинаковое количество пузырьков в секунду, которые приводят к уровню звукового давления, равному 85 дБА и возможность кавитационных повреждений в 6-дюймовом клапане более распространены и менее сконцентрированы, чем в 8-дюймовом клапане, допускается больше пузырьков в секунду и, следовательно, более высокий уровень шума присутствует в больших клапанах. Применяя то же рассуждение, количество пузырьков в секунду, допустимые в 4-дюймовом клапане, будет более сосредоточенным в 3-дюймовом клапане, чтобы избежать повреждения в меньших клапанах, предел шума должен быть ниже.

Установленные пределы SPL (основанные на расчетах шума с использованием VDMA 244221979), чтобы избежать кавитационных повреждений, являются арматура размером

до 3 дюймов: 80 дБА

от 4 до 6 дюймов: 85 дБА

от 8 до 14 дюймов: 90 дБА

от 16 дюймов и больше: 95 дБА

Обратите внимание, что, независимо от расчета шума, фактическое падение давления должно быть меньше, чем падение давления дросселирования, потому что опыт показывает, что управление падением давления дросселирования почти наверняка приведет к повреждению в большинстве применений регулирующей арматуры.

1.4. Почему клапаны с собственной равнопроцентной характеристикой имеют линейную расходную характеристику в трубопроводе?

Каким образом установленный поток, характерный для равнопроцентного клапана в системе, включающей значительное количество труб или других трудоёмких элементов "магически" становится линейной, или приблизительно линейной расходной установленной характеристикой. Компьютеризированный анализ, используя математическую модель системы, подтверждает, что это действительно так. Чтобы продемонстрировать это, мы рассмотрим систему, показанную на рис. 1.17. Это система с центробежным насосом и значительным количеством труб, как вверх по течению, так и вниз по течению от регулирующей арматуры. Статический анализ показывает, что при изменении расхода, давление на входе и выходе клапана (P1 и P2) изменяется как показано в таблице и графике на рис. 1.17.

Мы также приведем рабочий лист расчетов с размерами регулирующей арматуры, которая поможет построить график расходной характеристики данного клапана в системе, в которой она будет установлена. График расхода, выполняемый на основе табличных значений CV и зависимых от относительного хода (Таблица 1.1.), вводимых пользователем условий протекания технологического процесса, например, те, что показаны на рис. 1.17, и модель процесса, основанная на принципе, что потери давления в трубопроводной системе приблизительно равны квадрату расхода в приведенной модели процесса и ее применение приведены в таблице 1.2.

Таблица 1.1. Данные клапана

Данные расчета системы приведены ниже

Рис. 1.17. Анализ системы со значительным числом труб и падением давления до и после равнопроцентного клапана

Рисунок 1.18. представляет собой скриншот пользовательского интерфейса рабочего листа, отображающий данные процесса для примера на рис. 1.17. Он также показывает рассчитанный требуемый Cv клапана для указанного минимального и максимального расхода.

Рис. 1.18. Данные ввода и результаты вычислений для системы из рис.1.17.

На рисунке 1.19 показан график установленного относительного расхода (синим цветом) вместе с относительной действительной пропускной способностью клапана, Cv (серый). На рисунке 1.19 также показан перепад давления в клапане (красный цвет), определяемый моделью давления процесса в таблице 1.2.

Таблица 1.2.

Модель процесса падения давления в клапане

На рисунке 1.19 вертикальная ось слева показывает падение давления на клапане в зависимости от относительного хода клапана. Вертикальная ось справа показывает относительный установленный расход, и относительную пропускную способность клапана (Cv). Важно отметить, что оба графика установленного расхода (расходной характеристики) и действительной пропускной характеристики клапана (Cv) показывают на относительной шкале. То есть, относительный расход 1 – это 100% полностью открытый расход и относительная пропускная способность (Cv) 1 составляет 100% от полностью открытого Cv, рассчитанным производителем. Это широко используемое соглашение, так как оно позволяет легко сравнивать форму и линейность действительной установленной характеристики различных типов и размеров клапанов.

Рис.1.19. Действительная пропускная характеристика и перепад давления клапана в установленной пропускной характеристике

В примере ясно видно, что на основании компьютерной модели этой системы и клапана, установленная пропускная характеристика равнопроцентного клапана в этой системе почти линейная, где перепад давления через клапан уменьшается с увеличением расхода.

Обратная сторона, показывающая действительную пропускную способность клапана (Cv) и расход, как относительные графики, это то, что он маскирует то, что на самом деле происходит. Что на самом деле вызывает равнопроцентную действительную пропускную способность, чтобы стать почти линейным расходом в трубопроводе при снижении перепада давления в клапане с увеличением хода клапана и увеличением расхода?

На рисунке 1.20 объяснено, что на самом деле происходит, когда равнопроцентный клапан устанавливается в системе, в которой перепад давления клапана уменьшается с открытием клапана и увеличением расхода.

Рис. 1.20. Сравнение установленной пропускной характеристики 3-дюймого равнопроцентного сегментного шарового клапана в системе на рис.1 (красные линии) и в системе постоянного перепада давления в клапане (голубые линии)

На рис.1.20. показаны два скриншота, наложенных друг на друга из одного и того же расчетного листа. Он немного изменен, чтобы построить график фактического расхода (по левой оси) не как относительный расход, а в фактических единицах расхода (галлонов в минуту). Это сделано для того, чтобы можно было наблюдать разницу между тем, как выглядел бы полностью открытый расход, если бы перепад давления в клапане оставался постоянным с ходом клапана и расходом (синие линии), и если бы перепад давления в клапане уменьшился с ходом клапана и расходом из-за потерь давления в системе (красные линии). Когда перепад давления в клапане остается постоянным при всех открытиях клапана и расходах, характеристика установленного расхода (синяя линия) имеет ту же форму, что и действительная пропускная характеристика – равнопроцентная характеристика.

При установке в системе равнопроцентного клапана, где, из-за потерь давления, меняется не только форма соотношения между ходом клапана и расходом, но и значительно снижается полностью открытая пропускная способность клапана. Это может возникнуть из-за потерь давления в трубопроводах системы и других компонентов, потребляющих давление, такие как колена, отсечной клапан, теплообменники и т.д.

При наблюдении за красной кривой расхода видно, что, когда ход клапана сравнительно мал, перепад давления не очень сильно меняется. Это означает, что форма графика расходной характеристики не сильно отличается от кривой действительного расхода клапана. Но по мере того, как относительное положение клапана увеличивается, из-за особенностей потерь давления в трубопроводной системе, перепад давления, доступный для клапана, начинает быстро снижаться. Это приводит к тому, что поток увеличивается медленнее, и гораздо меньше, когда клапан полностью открыт. Конечный результат анализа заключается в том, что равнопроцентная действительная пропускная характеристика будет показывать почти линейную установленную расходную характеристику при установке в системе со значительным количеством разветвлений трубопроводов и/или других элементов, потребляющих давление.

Метод расчетов

Расчет установившегося расхода основан на простой математической модели процесса (Таблица 1.2), использующая принцип, согласно которому потери давления в трубопроводной системе приблизительно равны расходу в квадрате.

Существует 10 вариантов вычислений расхода, один из которых основан на Cv клапана. В таблице 1.1 показан расчет для каждого 10-ти процентного прироста хода клапана от 10% открытого (относительный ход 0,1)до 100% открытого (относительный ход 1,0). Так как цель расчета – это расчет расхода, но перепад давления в клапане – это функция потока (которая изначально неизвестна), и требуется итеративный расчет. При расчете сделано первоначальное предположение расхода для каждого из 10 расчетов. Предположение всегда меньше, чем ожидаемый фактический расход для этого конкретного увеличения относительного хода.

Для первого приращения хода (относительный ход 0,1), первоначальное предположение произвольно устанавливается 0,01 от минимального указанного значения расчетного расхода. Разумно предположить, что расход в любом практическом регулирующем клапане при 10%-ном ходе будет больше, чем 1/100 минимального расчетного расхода. Для последующих расчетов (относительное увеличение хода в пределах от 0,2 до 1,0), первоначальное предположение – это фактический расход, вычисленный из предыдущего расчёта увеличения хода.

Расчет расхода при каждом приращении относительного хода начинается с первоначального предположения для расхода и соответствующего Cv (вычисляется с использованием этого предположения о расходе, P1 клапана и перепада давления, рассчитанного моделью в табл. 2 при таком расходе). Абсолютное значение разницы между этим Cv и вводом пользователя расчетного Cv клапана в таблице на рис. 1 записан для этой итерации.

Для следующей итерации предположение расхода увеличено на 1% выше расхода, использованного в предыдущей итерации, и вышеописанный процесс повторяется. После достаточного количества итераций список вычисленной разницы между фактическим Cv клапана и вычисленным Cv ищется минимальное значение. Этот минимум – это точка, в которой вычисленная Cv наиболее близка к Cv клапана в таблице 1.1 для этого приращения относительного хода. Расход от этой итерации затем становится в пределах 1%. Расход при этом шаге относительного хода для этого клапана в этой системе. После вышеприведенной процедуры для всех 10 шагов хода клапана, чертятся графики, которые показаны на рисунке 1.20.

Хотя ранее об этом не упоминалось, причина, по которой FL (Коэффициент восстановления давления жидкости в клапане) указан в таблице 1.1. объясняется тем, что итерационные расчеты проверяют и корректируют для дросселированного потока. Влияние трубных редуцирующих устройств на оба Cv и FL также включены в расчеты.

1.5. Подходы к эффективному подбору номинального диаметра регулирующей арматуры

Выбор регулирующей арматуры подходящего размера необходим для достижения высшей степени управления процессом. Сегодня расчет размеров регулирующей арматуры обычно выполняются с использованием компьютерных программ. Большинство производителей регулирующей арматуры предлагают программное обеспечение для определения размеров регулирующей арматуры бесплатно, однако в основном они применяются только к регулирующей арматуре производителя. Расчеты в программе подразумевают выбор из ряда имеющихся регулирующих клапанов. Обычно выбор включает типовые регулирующие клапаны с равнопроцентной характеристикой, линейные проходные клапаны, шаровые краны, эксцентриковые поворотные клапаны, высокопроизводительные дисковые затворы и сегментные шаровые краны. Эти типовые решения по выбору арматуры позволяют пользователю исследовать возможность применения различных типов и размеров регулирующей арматуры для конкретного применения, не оказывая предпочтение конкретному производителю арматуры.

Кроме того, существует множество комплексных таблиц в Excel, соответствующие методам ANSI / ISA-75.01.01 (IEC60534-2-1 Mod)-20012, а также уравнения расхода для подбора размеров регулирующей арматуры, которые доступны бесплатно на www.control-valve-application-tools.com. Эти таблицы применимы к регулирующей арматуре всех производителей и документированы так, чтобы пользователь мог проследить расчеты по уравнениям в стандарте.

Ниже представлен краткий обзор некоторых факторов, которые нужно учитывать, чтобы определить размер и выбрать правильную регулирующую арматуру для конкретного применения.

Выбор типа регулирующей арматуры

Выбор типа регулирующей арматуры, например, линейные седельные клапаны, шаровой, сегментный краны, дисковый затвор и т.д.) часто основывается на инструкциях или предпочтениях завода-изготовителя. Например, большинство регулирующей арматуры на бумагоделательных заводах обычно представляют собой шаровые или сегментные краны. Нефтеперерабатывающие заводы традиционно используют большое количество клапанов с линейным движением штока, хотя беспокойство по поводу выбросов в атмосферу заставило некоторых пользователей обратить внимание на поворотную регулирующую арматуру, потому что зачастую в таком случае легче получить долговременное уплотнение штока. Линейные клапаны имеют самый широкий спектр опций пропускной характеристики, снижения давления, температуры, шума и кавитации.

Линейные клапаны, как правило, самые дорогие. Сегментные шаровые краны, как правило, имеют более больший диапазон регулирования и почти в два раза большую пропускную способность от линейных клапанов сравнимого диаметра и, кроме того, они дешевле. Тем не менее, сегментные шаровые краны ограничены при наличии экстремальных температуры и давления и более подвержены шуму и кавитации, чем линейные клапаны. Поворотные затворы даже дешевле, чем шаровые краны, особенно больших размеров (8 дюймов и более). Они также имеют меньший диапазон регулирования, чем шаровые краны, и более подвержены кавитации. Эксцентриковые поворотные краны (общий термин, обычно применяется к клапанам с торговыми названиями, такими как Camflex, зарегистрированный товарный знак DresserMasoneilan и Finetrol, зарегистрированный товарный знак MetsoAutomation) сочетает в себе особенности поворотной регулирующей арматуры, такие как уплотнения штока с высоким сроком службы и компактная конструкция запорной регулирующей арматуры. В отличие от других типов поворотной регулирующей арматуры, которые имеют пропускную способность примерно вдвое больше, чем у линейной регулирующей арматуры, пропускная способность эксцентриковых поворотных плунжерных клапанов находится на уровне линейных клапанов.

Назад Дальше