Рис. 1.7. Блоки распределительной арматуры на МП
Создание и внедрение блочно-модульного автоматизированного малогабаритного оборудования большой мощности и блок-модулей высокой заводской готовности отвечают возросшим требованиям индустриализации обустройства морских нефтяных и газоконденсатных месторождений, охраны окружающей среды от загрязнений, надежности функционирования технологического оборудования и безопасности ведения работ на морских стационарных платформах.
КЕЙС.
ИНДУСТРИАЛИЗАЦИЯ ОБОРУДОВАНИЯ МОРСКИХ ПЛАТФОРМ. БЛОЧНО-МОДУЛЬНЫЕ УСТАНОВКИ УПРАВЛЕНИЯ СКВАЖИНОЙ КОМПАНИИ КОСМОС-НЕФТЬ-ГАЗ
Рост промышленного производства, а также растущие потребности населения неуклонно требуют увеличения добычи энергетических ресурсов. Материковые ресурсы углеводородного сырья истощаются, поэтому возникает все большая потребность освоения новых месторождений, при этом одним из основных перспективных направлений является освоение морских нефтегазовых месторождений, и в том числе месторождений континентального шельфа.
Необходимо отметить, что освоение морских месторождений, как наиболее сложных, сопряжено с большими трудностями и существенно отличается от освоения углеводородных месторождений, расположенных на суше.
Как показывает опыт последних лет, перспективным направлением при обустройстве морских месторождений углеводородного сырья является применение в обвязке скважин блочно-модульных конструкций полной заводской готовности. С одной стороны, блочно-модульные конструкции оборудования обеспечивают более высокие показатели качества, надежности, экологической и промышленной безопасности, с другой – при оснащении их системами управления и контроля существенно снижается роль человеческого фактора в процессе управления технологическими процессами.
В соответствии с этим направлением, компания ООО ФПК «Космос-Нефть-Газ», г. Воронеж, разработала и изготовила для компании ООО «Лукойл-Нижневолжскнефть», г. Астрахань, блочно-модульную станцию управления фонтанной арматурой СУФА77 для морской ледостойкой стационарной платформы ЛСП-1 нефтегазоконденсатного месторождения им. В. Филановского.
Рис.1. Морская ледостойкая стационарная платформа ЛСП -1 нефтегазоконденсатного месторождения им. В. Филановского
Конструктивно станция управления СУФА77 разделена на следующие основные составные части:
– насосно-аккумуляторная установка, включающая силовое гидравлическое оборудование, необходимую пусковую и регулирующую арматуру, гидравлический предохранительный контур, модуль контроля возгораний и аварийных выключений;
– восемь модулей управления эксплуатационными скважинами;
– один модуль управления газонагнетательной скважиной;
– два модуля управления водонагнетательными скважинами;
– электрооборудование и комплекс программно-технических средств.
Станция управления СУФА 77 управляет одиннадцатью скважинами:
– восемью эксплуатационными скважинами;
– двумя водонагнетательными скважинами;
– одной газонагнетательной скважиной.
Конструкция станции после ее дооснащения дополнительными модулями позволяет управлять восемнадцатью скважинами, а именно:
– тринадцатью эксплуатационными скважинами;
– тремя водонагнетательными скважинами;
– двумя газонагнетательными скважинами.
Одной из отличительных особенностей станции управления СУФА77 является то, что она не имеет единого шкафа для размещения оборудования, при этом ее составные
части компактно размещены в отдельном помещении.
Схема размещения блоков станции управления СУФА77
1 – насосно-аккумуляторная установка;
2 – модули управления эксплуатационными скважинами;
3 – модуль управления газонагнетательной скважиной;
4 – модули управления водонагнетательными скважинами;
5 – электрооборудование и комплекс программно-технических средств.
Рис. 2. Схема размещения блочно-модульной установки СУФА 77
Рис.3. Насосно-аккумуляторная установка станции управления СУФА 77
а) б) в)
Рис. 4. Модули управления
а) эксплуатационной скважиной
б) водонагнетательной скважиной
в) управления газонагнетательной скважиной
В конечном итоге применение блочно-модульных конструкций для обустройства месторождений углеводородов позволит более оптимально разместить оборудование в замкнутом пространстве (помещении), сократить сроки и снизить затраты на монтаж и пусконаладочные работы на морской платформе. Суммарное ожидаемое снижение расходов составляет до 20%.
1.3. Современные требования к морским платформам
Освоение более глубоких акваторий шельфа потребовало создания более совершенных конструкций МП. Основные требования, учитываемые в современной проектной документации, приведены ниже:
– эффективность – конструкция должна наилучшим образом соответствовать своему функциональному назначению;
– надежность – вся конструкция в целом и ее элементы должны без повреждений противостоять нагрузкам на них и воздействиям в условиях эксплуатации, особенно штормам, ледовой нагрузке и сейсмическим воздействиям;
– долговечность – с безотказной работой в течение установленного срока ее эксплуатации;
– технологичность – при проектировании необходимо устанавливать соответствующие производственно-технические возможности изготовления, транспортировки, монтажа в море, предусматривать удобство в эксплуатации и возможность усиления конструкций;
– экономичность – затраты на проектирование, изготовление, монтаж и эксплуатацию должны быть минимальными;
– компактность и эргономичность – для возможности размещения оборудования в стесненном пространстве и удобства обслуживания;
– монтажепригодность – с полным или частичным демонтажем после завершения буровых и эксплуатационных работ.
1.4. Морские платформы
ОБЗОР ТИПОВ МОРСКИХ ПЛАТФОРМ
В морской добыче особенно актуальны наклонные и многозабойные скважины, когда вся территория промысла сосредоточена на платформе с ограниченной площадью 4–6 тыс. м2. Освоение морских месторождений нефти и газа, связанное со строительством дорогостоящих платформ, осуществляют исключительно методами кустового и направленного бурения. В кусте бурят до 40–60 скважин.
Профили каждой скважины должны быть тщательно продуманы и запроектированы. В процессе бурения необходим постоянный контроль за положением ствола скважины в пространстве. Ведь первые пробуренные скважины уже дают продукцию, и нельзя допустить повреждения их обсадных колонн при бурении последующих выработок. Длина стволов направленных скважин может достигать 9 км, и часто они имеют горизонтальное окончание. Сложность проводки скважин на больших морских глубинах состоит еще и в правильном выборе промывочной жидкости. Поскольку давление вышележащей толщи воды меньше, чем обычное горное давление на таких же глубинах, возможен гидроразрыв пластов.
В зависимости от глубины вод и назначения скважин морские основания делят на стационарные (насыпи, насыпные и намороженные острова, свайные и крупноблочные основания, платформы гравитационного и каркасного типов) и мобильные, к которым относят баржи, самоподъемные и полупогружные установки.
На стационарных основаниях можно бурить и эксплуатировать скважины в привычных условиях, применяя обычный комплекс надежного стандартного бурового и эксплуатационного оборудования. Применение самоподъемных и особенно полупогружных установок требует принципиально нового подхода к оборудованию устьев и обслуживанию добычных скважин.
Конструкции всех типов оснований и применяемое оборудование для их обслуживания постоянно совершенствуются, поэтому доступные морские глубины непрерывно увеличиваются.
Организация морского промысла требует предварительных гидрометеорологических наблюдений за температурным режимом, направлением ветров и течений, их интенсивностью, состоянием грунта на морском дне.
Большое внимание при работе на акваториях уделяют защите металла от коррозии. Интенсивная коррозия, в десятки раз большая, чем в атмосфере и под водой, происходит в зоне попеременного смачивания и высыхания. Металл в этой зоне покрывают специальным защитным слоем.
Сооружения для морской добычи углеводородов
Хотя бурение скважин на море в основном осуществляется с использованием такого же основного оборудования, как и на суше, однако проекты освоения морских нефтяных и газовых месторождений существенно отличаются от проектов разработки наземных месторождений. Главное различие состоит в наличии верхнего строения платформы и подводного основания, на котором монтируется буровая установка.
Значительная сложность и специфика проведения буровых работ в море обусловливается окружающей средой, высокой стоимостью и уникальностью технических средств, необходимостью проведения работ под водой, организацией строительства и эксплуатации объектов в море. Главная особенность шельфовых разработок – высокие затраты и стесненность пространства для размещения оборудования. Стоимость выполнения буровых работ на море примерно на порядок превышает стоимость бурения на суше, табл. 1.1.
Табл. 1.1. Технико-экономические показатели бурения на море и на суше
Общее количество глубоководных добычных платформ и систем, установленных по всему миру к 2009 году, показано на рис. 1.4. и в табл.1.2.
Рис.1.8. Типы используемых оффшорных систем морской добычи
Табл. 1.2. Количество морских добывающих систем во всем мире
Подводные системы в данном случае означают, что трубопроводы подключаются к существующим подводным объектам или объектам на поверхности моря. Преимуществами подводных систем являются более низкая стоимость привлекаемого капитала и сокращение производственного цикла на 70% (до получения первой продукции) по сравнению с созданием систем на земле.
Геологическими особенностями морского бурения являются:
– Относительно меньшая величина горного давления в породах за счет того, что часть пород более высокой плотности заменяет морская вода плотностью 1,03 г\см3. Это обстоятельство учитывают при ликвидации нефтепроявлений во избежание гидравлического разрыва пород.
– Меньшая, чем на суше, глубина залегания газоносных пластов.
Особенностью континентального шельфа является то, что 75% акваторий расположено в районах, которые продолжительное время покрыты льдами. Основными факторами, определяющими возможность строительства и эксплуатации нефтепромысловых объектов в море, являются:
– глубина моря,
– температурные условия,
– ветер,
– волнение и течения,
– ледовый покров,
– химический состав воды.
Строительство морских нефтепромысловых сооружений требует проведения инженерно-геологических изысканий морского дна. Достоверность и полнота данных определяют безопасность эксплуатации сооружения и экономичность проекта.
Для морской добычи требуется обычно 4 основных элемента, как показано на рис. 1.9.
– подводная система
– система гибких трубопроводов и стационарных трубопроводов, подъемные системы и стояки
– стационарные или плавучие платформы и устройства (системы, баржи, суда)
– эксплуатационное надповерхностное оборудование на платформе или системе
Рис. 1.9. Основные элементы морской добычи
Подводные системы
Подводный системы могут быть разбиты на три части следующим образом:
– скважинное оборудование (елка) и манифольд (коллектор),
– система управления – модуль подводного контроля и система остановки добычи
– система связи – перемычки и трубопроводы.
Рис. 1.10. Подводные системы морской добычи
Конструкции стационарных и плавучих платформ, рис. 1.8, а также суда для проведения поисковых работ и добычи нефти и газа при всех своих различиях имеют необходимый комплект оборудования и помещения для работы и жилья. В районах с мягким климатом и неглубокими водами для различных типов работ могут устанавливаться отдельные специализированные платформы. В районах с суровыми условиями и глубокими водами количество и размер платформ ограничивается до минимума. Так, в мелководных районах Юго-Восточной Азии отдельно установлены буровые, добывающие, жилые и факельные платформы, тогда как в Северном море каждая платформа охватывает все упомянутые функции.
Рис. 1.11. Варианты систем бурения и разработки глубоководных скважин
Объединенная добывающая, буровая и жилая платформа с возможным нефтехранилищем и подачей нефти на погрузочные шельфовые сооружения требует тщательного планирования размещения оборудования и точного анализа безопасности функционирования комплекса.
Работа на шельфе связана с необходимостью длительного пребывания персонала на колеблющейся платформе, осложнена суровыми природными условиями, что ведет к дополнительным эмоциональным нагрузкам. В некоторых районах мира в случае ураганов или тайфунов обслуживающий персонал эвакуируется с платформы. Любой разлив нефти на шельфе значительно труднее нейтрализовать, чем на суше.
Разработка морских месторождений, добыча, подготовка и транспорт углеводородов отличаются непрерывным производственным циклом и должны вестись круглый год, даже тогда, когда море покрыто льдом. В последние годы проводятся испытания комплексов оборудования подводной эксплуатации морских месторождений в ледовых условиях.
В процессе разработки морских месторождений требуется надежное сообщение между отдельными объектами. Как уже указывалось, доставка грузов на судах при волнении свыше 4 баллов затруднена. Малая глубина акватории в местах разработки (например, район Нефтяные камни в Азербайджане) вынуждает создавать эстакады как средство сообщения между объектами промыслов.