В поисках общей теории роста человечества - Молчанов Анатолий 7 стр.


Когда взаимодействие между членами изолированной популяции отсутствует, ее рост происходит по экспоненциальному закону. Этот закон был описан в книге Роберта Мальтуса «Опыт о законе народонаселения».

В ней впервые было сформулировано положение о том, что численность популяции в благоприятных условиях растет по закону геометрической прогрессии. Сам русский термин «популяция» происходит от английского «population» – население. Мальтус был первым, кто применил математику в экологии, если не считать итальянского математика Фибоначчи.

В своей работе Мальтус четко сформулировал необходимые идеализации, без которых стала бы невозможной математическая постановка задачи: однородность и изолированность популяции, неограниченность ресурсов, постоянство коэффициентов рождаемости и смертности, отсутствие взаимодействия, способного нелинейно сказаться на приросте.

Закон Мальтуса считается первым и самым важным законом экологии популяций. Законы экологии популяций, по мнению В.Л. Гинсбурга, напоминают законы физики:

«Закон Мальтуса описывает, как растут или уменьшаются популяции, когда больше ничего не происходит. Он описывает естественное состояние популяций: как они ведут себя в отсутствие каких-либо внешних факторов (Гинзбург, Коливан 2004)». «…»

«Гинзбург (1986) заметил, что закон Мальтуса играет такую же роль в экологии, как Первый закон Ньютона в физике. До Галилея и Ньютона Аристотель утверждал, что естественным состоянием тел является покой, а движение возникает только тогда, когда к объекту приложена сила.

Господин Исаак Ньютон, однако, доказал, что верно обратное: постоянное движение является естественным состоянием, а непостоянное движение и покой возникают только тогда, когда к объекту приложена сила. Его первый закон содержит концепцию инерции, которая является «стремлением тела сопротивляться изменениям своей скорости» (Кребс 2001). Подобно первому закону Ньютона, закон Мальтуса говорит о том, что естественное состояние популяции – не покой (т. е. постоянная популяция), а движение (т. е. экспоненциальный рост или уменьшение).

И если популяции не растут или уменьшаются экспоненциально, это происходит потому, что внешняя сила (т. е. что-то в окружающей среде) изменяет уровень рождаемости и/или смертности (Гинзбург 1986, Гинзбург, Коливан 2004). Эта внешняя сила может быть как небиотическим, так и биотическим фактором как, например, «уровень межвидового заполнения» и плотность всех остальных видов в сообществе, которые могли бы взаимодействовать с основными видами (Турчин 2003)» [13].

Дадим определение экспоненциальному росту сначала для колонии микроорганизмов, где смертность отсутствует, а затем и для произвольной популяции организмов:

Экспоненциальный, естественный, обусловленный только внутренними, эндогенными, системными причинами, т. е. никак не «извне», не «изнутри» не управляемый рост численности популяции однородных размножающихся организмов – это суперпозиция множества параллельных процессов деления, размножения с постоянным коэффициентом естественного прироста по закону одной и той же прогрессии на последовательности временных интервалов постоянной длительности, равной характерному времени размножения с равномерно распределенной фазой.

Размножающуюся популяцию можно представить как объединение элементарных, независимых, далее неделимых частиц, подсистем, состоящих, к примеру, из одной бактерии или пары разнополых представителей моногамной популяции. Т. е. эта частица, атом популяции, ее элементарная составляющая – «не видит», «не чувствует» других, размножается и гибнет независимо от них по закону геометрической прогрессии, одинаковому для всех.

В более сложном случае можно допустить взаимодействие такой элементарной подсистемы с другими, но лишь такое, которое оставляет неизменным коэффициент естественного прироста вне зависимости от находящегося в системе числа «частиц». Итак, главные условия экспоненциального роста численности популяции это:

1. Неизменность состояния среды (необязательно, чтобы была строгая неизменность, вариации возможны, но лишь в тех пределах, в которых сохраняется гомеостаз организмов), в которой находится популяция, следствием чего является строгая цикличность, периодичность элементарного репродуктивного процесса во времени. Для экспоненциального роста колонии микроорганизмов, к примеру, необходима неизменность концентрации питательной смеси, ее температуры, физических полей, в которых находятся организмы, уровня радиации и т. д.

2. Независимость, отсутствие взаимовлияния процессов размножения элементарных составляющих популяции, рассредоточенной в пределах среды обитания, результатом чего является аддитивность естественного прироста (скорости роста численности) любых ее подсистем. Колонию микробов, например, можно разбить на любые части, в которых будет разное число таких микробов, и скорость роста численности этой колонии будет равна сумме скоростей роста всех ее частей. Это свойство вытекает из линейности дифференциального уравнения (1).

3. Коэффициент естественного прироста популяции α, т. е. прирост ее численности за какой-то малый фиксированный промежуток времени, отнесенный к этой численности, есть величина неизменная или «почти» неизменная в период роста численности.

Рис 1. Главное условие экспоненциального роста популяции заключается в постоянстве коэффициента естественного прироста.

Для популяции организмов со смертностью он равен разности между числом родившихся и числом умерших за единицу времени (Р – С), поделенную на общую численность. И число родившихся, и число умерших – случайные величины, различные по своей природе, имеющие разные математические ожидания и дисперсии и по разному меняющиеся во времени.

Коэффициент рождаемости (P/NΔt) и коэффициент смертности (C/NΔt) могут изменяться со временем в процессе роста популяции, но если при этом их разность будет оставаться неизменной – рост будет экспоненциальным.

Если же это условие будет нарушено – экспоненты не получится; например, если для некоторой популяции коэффициент рождаемости – константа и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим.

Обобщенный закон роста численности изолированной популяции

Каким должен быть закон свободного роста изолированной популяции в условиях среды, свойства которой не меняются и при учете взаимодействия ее членов? Будем считать выполненными все возможные идеализации, рассмотренные нами ранее. Для такой популяции прирост за счет рождаемости, так же как и убыль за счет смертности, возрастает при увеличении ее общей численности.

Поэтому в простейшем случае без учета внутривидовых взаимодействий (тех из них, что влияют на прирост численности) скорость роста должна быть пропорционально общей численности. Поскольку даже и при учете взаимодействий, если их влияние устремить к нулю, обобщенный закон роста должен превращаться в уравнение Мальтуса, то дифференциальное уравнение этого закона должно быть уравнением первого порядка.

Процесс роста численности свободной популяции, т. е. популяции, рост которой никем и никак не регулируется, не зависит (при прочих равных условиях) от того на каком участке шкалы физического времени он наблюдается. Поэтому время как независимая переменная не должно явным образом входить в состав его правой части.

Такие уравнения называются автономными. Структура правой части обобщенного закона должна иметь вид (5): линейный член αN плюс нелинейный F(N), описывающий взаимодействие между членами популяции.

Рис. 1. Обобщенный закон свободного роста изолированной популяции.

Причем значение этой функции при N = 0 должно быть равным нулю: F(0) = 0, т. к. иначе пришлось бы допустить существование составляющей прироста, не зависящей от численности популяции. Так, например, при N = 0, т. е. при полном отсутствии членов популяции, скорость роста была бы не равна нулю. Что противоречит фундаментальному свойству жизни: живое происходит только от живого, и прирост определяется, прежде всего, численностью.

Если все же допустить присутствие аддитивной константы в правой части уравнения (5), то в простейшем случае, если отбросить линейный и нелинейный член и оставить только константу, получим закон линейного роста численности от времени, который не может описывать рост никакой свободно растущей популяции, поскольку прирост здесь является постоянным и никак не зависит от растущей численности. (Это утверждение находится в противоречии с феноменологической теорией Капицы, согласно которой скорость роста численности гоминид на первом этапе продолжительностью 2,8 млн лет была постоянной и не зависела от растущей численности.)

Если же оставить линейный член плюс константа от нелинейного – получим простейшее линейное неоднородное дифференциальное уравнение первого порядка с постоянными коэффициентами. В зависимости от знаков С и α имеется четыре варианта роста численности.

Рис. 2. Пример простейших линейных законов, которые не могут описывать свободный рост (убывание) численности популяции.

1. Случай С > 0, α > 0 можно интерпретировать как экспоненциальный рост популяции с учетом постоянного дополнительного прироста за счет клонирования. При этом численность популяции неограниченно возрастает.

2. Случай С < 0, α > 0 – рост численности популяции рыб в «неограниченном» водоеме с заданной квотой отлова. Численность популяции неограниченно возрастает.

3. Для случая С > 0, α < 0 можно предложить такую леденящую душу легенду: вымирающее человечество с отрицательным коэффициентом естественного прироста, постепенно заменяемое киборгами (инопланетянами) с тем же коэффициентом естественного прироста α < 0, что у людей; С – число киборгов, вводимых в социум за месяц, αN – число погибших за месяц членов социума (киборгов и людей). При приближении к асимптоте N = −С/α «человеческая составляющая» социума устремляется к нулю.

4. Случай С < 0, α < 0 – совсем уже печальный с N = 0 в итоге: планомерное истребление и без того уже вымирающей по естественным причинам популяции.

Все это примеры несвободного, управляемого роста популяции, т. к. в каждом из этих случаев прирост ее численности происходит не только за счет собственной способности популяции к размножению (αNΔt), но и за счет сторонних (управляющих) сил, вносящих постоянный вклад в этот прирост (СΔt). Следовательно, уравнение (4) не может считаться причинным законом, а при α > 0 (т. е. в случае роста популяции) процесс роста, описываемый этим уравнением, не может быть определен как простой автокаталитический, самоускоряющийся процесс.

Итак, уравнение (4) не может служить для описания динамики свободного роста популяции каких-либо организмов из-за присутствия в его правой части аддитивной константы. В дальнейшем будем говорить только о мальтузианской составляющей, определяющей рост популяции, т. е. считаем, что α > 0.

Согласно теореме о разложении функции в степенной ряд, любую «достаточно хорошую» функцию всегда можно в такой ряд разложить. Следовательно, нелинейный член F(N) в правой части уравнения (5) можно разложить в ряд Маклорена; при этом первый и второй член разложения должны быть равны нулю: βo = β1 = 0, т. к. константу отбрасываем, а линейный член равен αN, α > 0.

Полученное уравнение с разделяющимися переменными можно проинтегрировать для каждой конкретной F(N). Отсутствие аддитивной константы в правой части приводит к тому, что она обращается в нуль при N = 0. Т. к. левая часть уравнения – это производная от численности по времени или скорость роста, то для кривой роста имеется горизонтальная асимптота, совпадающая с осью времени, т. е. такая же асимптота, как у экспоненты.

Это хороший показатель, он говорит о том, что рост численности популяции, определяемый обобщенным законом роста в его идеальном описании с непрерывной численностью, не имеет начала. Если бы рост начинался в некоторый фиксированный момент времени, пришлось бы давать какое-то объяснение выделенности этого момента, как, например, при описании степенного параболического роста.

Кроме того, очень важно понимать то, что линейным членом αN в обобщенном уравнении роста (5) пренебречь нельзя в принципе. Перечислим причины, почему это так:

1. Т. к. разложение F(N) начинается с квадратичного члена, то F(N)/αN → 0 при N → 0, откуда следует, что при небольшой численности рост описывается линейным уравнением Мальтуса, является экспоненциальным и не зависит в первом приближении от взаимодействий между членами популяции. Т. е. получается правильная асимптотика.

2. Если отбросить линейный член αN, оставить только F(N) и считать, например, что F(N) = βiNi, βj = 0, j ≠ i, т. е. все члены разложения кроме одного равны нулю, как в уравнении Капицы, то получаем причинный закон степенного роста, согласно которому, как мы покажем в главе «Критика», не растет ни одна популяция в природе. Если же в разложении F(N) присутствует более одного члена, а функция F(N) является монотонной, что соответствует любому реально возможному росту изолированной популяции, то и в этом случае можно показать, что рост будет аналогичен степенному со всеми теми противоречиями, которые были рассмотрены нами ранее.

3. Согласно первому закону экологии популяций, все популяции в неизменных, благоприятных внешних условиях и при отсутствии взаимодействий – растут экспоненциально. Взаимодействия могут замедлить или ускорить этот экспоненциальный рост, но полностью отменить его они не могут. Если взять, к примеру, размножающееся человечество, то это, прежде всего, биологический вид, такой же как и множество других видов, когда-либо существовавших в природе, умножающий численность своих популяций по закону Мальтуса; и только затем его можно рассматривать как совокупность существ с множеством изученных и неизученных социальных связей, влияющих на всё и вся, в том числе и на мировой естественный прирост. (По закону Мальтуса могла расти численность популяций первых архантропов и отдельных народов в историческое время, когда была выполнена третья из обозначенных нами идеализаций об однородности популяции.)

Важным следствием обобщенного закона является уравнение (6): зависимость коэффициента естественного прироста ΔN/NΔt (среднего прироста численности на особь популяции за единицу времени) от полной численности этой популяции.

Эта зависимость может существовать только в том случае, если популяция представляет собой систему взаимодействующих особей, что возможно для сосредоточенной популяции с небольшим по площади ареалом обитания или для пространственно-рассредоточенной, но объединенной единым информационным полем Мир-системы растущего человечества.

Что полностью отвечает тем идеализациям, которые изначально закладывались в обобщенную модель. И что, несомненно, значительно снижает ее эвристическую ценность. (Учет «распространения» в пространстве особей (информации) приводит к необходимости построения моделей второго типа, основанных на уравнениях типа диффузия-кинетика, т. е. к значительно более сложной математике.)

Назад Дальше