Теорема века. Мир с точки зрения математики - Пуанкаре Анри 4 стр.


Различные замечания. Мы можем поставить перед собой несколько важных вопросов:

1. Исчерпывается ли творческое могущество разума созданием математической непрерывности?

Нет: труды Дюбуа-Реймона служат поразительным доказательством этого.

Известно, что математики различают бесконечно малые разных порядков, так что бесконечно малые второго порядка не только бесконечно малы в абсолютном смысле, но еще и являются таковыми по отношению к бесконечно малым первого порядка. Нетрудно представить себе бесконечно малые дробного и даже иррационального порядка, и, таким образом, мы снова находим ту последовательность математической непрерывности, которой посвящены предшествующие страницы. Более того: существуют такие бесконечно малые величины, которые бесконечно малы по отношению к бесконечно малым первого порядка и, напротив, бесконечно велики по отношению к бесконечно малым порядка 1 + ε, как бы ни было мало ε. Итак, вот еще новые члены, разместившиеся в нашем ряду; и если мне будет позволено вернуться к терминологии, которой я недавно держался и которая является достаточно удобной, хотя еще и не используется широко, я скажу, что этим создан вид непрерывности третьего порядка.

Легко было бы идти дальше, но это было бы бесполезной игрой ума; пришлось бы воображать себе одни символы без возможности их применения; на это никто не отважится. Даже непрерывность третьего порядка, к которой приводит рассмотрение различных порядков бесконечно малых, сама по себе является слишком мало полезной, чтобы приобрести право быть упоминаемой, и геометры рассматривают ее только просто как курьез. Разум пользуется своей творческой силой только тогда, когда опыт принуждает его к этому.

2. Раз мы обладаем понятием математической непрерывности, гарантированы ли мы от противоречий, аналогичных тем, которые положили начало этому понятию?

Нет; и я сейчас дам этому пример.

Надо быть очень сведущим, чтобы не считать очевидным, что каждая кривая имеет касательную: и в самом деле, если представлять себе эту кривую и некоторую прямую как две узкие полосы, то всегда можно расположить их так, что они будут иметь общую часть, не пересекаясь. Теперь вообразим себе, что ширина этих двух полос бесконечно уменьшается; существование их общей части будет всегда возможным, и в пределе, так сказать, две линии будут иметь общую точку, не пересекаясь, т. е. они будут взаимно касаться друг друга.

Геометр, рассуждающий таким образом, сделал бы – сознательно или нет – то же самое, что мы сделали раньше, желая доказать, что две пересекающиеся линии имеют общую точку; и его интуиция могла бы показаться такой же законной.

Между тем она его обманула бы. Можно доказать, что существуют кривые, не имеющие касательных, если эта кривая определена как аналитическая непрерывность второго порядка.

Несомненно, какая-нибудь уловка, аналогичная ранее изученным нами, позволила бы устранить противоречие, но так как оно встречается только в весьма исключительных случаях, то им и не занимаются. Вместо того чтобы стараться примирить интуицию с анализом, удовольствовались тем, что пожертвовали одним из двух; и так как анализ должен остаться непогрешимым, то всю вину отнесли на счет интуиции.

Физическая непрерывность нескольких измерений. Выше я исследовал физическую непрерывность такою, какой она вытекает из непосредственных данных наших чувств или, если угодно, из прямых результатов опытов Фехнера; я показал, что эти результаты резюмируются противоречивыми формулами

А = В, В = С, А < С.

Посмотрим теперь, как это понятие было обобщено и как оказалось возможным вывести из него понятие непрерывностей многих измерений.

Рассмотрим две любые группы ощущений. Мы или будем в состоянии различить их, или нет, подобно тому как в опытах Фехнера вес в 10 граммов можно было отличить от веса в 12 граммов, но не от веса в 11 граммов. Ничего другого не нужно для построения непрерывности многих измерений.

Назовем элементом одну из этих групп ощущений. Это будет нечто аналогичное математической точке, однако не совсем то же самое. Мы не можем определить размеры нашего элемента, так как мы не умеем отличить его от соседних элементов, он как бы окутан туманом. Если бы можно было употребить астрономическое сравнение, наши «элементы» были бы подобны туманностям, между тем как математические точки уподоблялись бы звездам.

Если так, то система элементов образует непрерывность, раз есть возможность перейти от любого из них к какому угодно другому через ряд последовательных элементов – таких, что каждый из них не мог бы быть различен от предыдущего. Этот линейный ряд является по отношению к линии математика тем же, чем является изолированный элемент по отношению к точке.

Прежде чем идти дальше, я должен разъяснить, что такое купюра. Рассмотрим непрерывность С и возьмем у нее некоторые из ее элементов, которые на одно мгновение будем рассматривать не принадлежащими больше к этой непрерывности. Совокупность элементов, взятых таким образом, будет называться купюрой. Может статься, что вследствие этой операции С окажется подразделенной на несколько отдельных непрерывностей, так как совокупность остающихся элементов не будет более составлять единую непрерывность.

Тогда у С найдутся два элемента A и В, которые необходимо будет считать принадлежащими двум различным непрерывностям; мы узнаем это потому, что нельзя будет найти в С линейный ряд последовательных элементов (каждый из этих элементов не может отличаться от предыдущего; за первый возьмем A, а за последний В), если хоть один из элементов этого ряда не будет неотличим от одного из элементов купюры.

Может, напротив, случиться, что реализация купюры будет недостаточна для подразделения непрерывности С. В целях классификации физических непрерывностей мы должны исследовать, каковы должны быть купюры, которые необходимы для подразделения непрерывности.

Если физическую непрерывность С можно подразделить, реализуя купюру, состоящую из конечного числа различимых один от другого элементов (и не образующую ни одной непрерывности, ни нескольких непрерывностей), то мы скажем, что С есть непрерывность одного измерения.

Если, напротив, можно подразделить С только при помощи купюр, которые сами представляют собой непрерывности, то мы скажем, что С – непрерывность нескольких измерений. Если это достигается купюрами, которые являются непрерывностями одного измерения, то мы скажем, что С имеет два измерения; если достаточно купюр, имеющих два измерения, то мы скажем, что С имеет три измерения, и т. д.

Таким образом, понятие физической непрерывности многих измерений оказывается определенным благодаря тому весьма простому факту, что две группы ощущений могут быть различимыми или же неразличимыми.

Математическая непрерывность нескольких измерений. Понятие математической непрерывности n измерений вытекает отсюда совершенно естественно при помощи процесса, вполне подобного тому, который мы изучили в начале этой главы. Точка подобной непрерывности, как известно, представляется нам определенной при помощи системы n различных величин, называемых ее координатами.

Не всегда необходимо, чтобы величины эти были измеримыми. В геометрии имеется целая отрасль, в которой отвлекаются от измерения этих величин; в ней занимаются, например, только изучением вопроса, лежит ли точка В на кривой АВС между точками A и С, и не стараются узнать, равна ли дуга АВ дуге ВС, или она в два раза больше ее. Это – так называемый Analysis Situs.

В этом вся сущность учения, привлекшего к себе внимание величайших геометров, учения, из которого вытекает ряд замечательных теорем. Эти теоремы отличаются от теорем обыкновенной геометрии тем, что они являются чисто качественными, и они остались бы справедливыми, если бы фигуры копировались искусным чертежником, который грубо нарушал бы их пропорции и заменял бы прямые линии более или менее искривленными.

Когда в только что определенную нами непрерывность пожелали ввести меру, эта непрерывность превратилась в пространство: родилась геометрия. Но я откладываю это исследование для второй части.

Часть II. Пространство

Глава III. Неевклидовы геометрические системы

Всякое заключение предполагает наличие посылок; посылки же эти или сами по себе очевидны и не нуждаются в доказательстве, или могут быть установлены, только опираясь на другие предположения. Но так как этот процесс не может продолжаться беспредельно, то всякая дедуктивная наука, и в частности геометрия, должна основываться на некотором числе недоказуемых аксиом. Поэтому все руководства по геометрии прежде всего излагают эти аксиомы. Но между этими аксиомами приходится делать различие; некоторые их них, как, например, аксиома: «две величины, равные одной и той же третьей, равны между собой», суть предложения не геометрии, а анализа. Я рассматриваю их как аналитические априорные суждения и не буду заниматься ими. Но я должен остановиться на других аксиомах, которые относятся к геометрии. Большинство руководств излагают три такие аксиомы:

1. Между двумя точками можно провести лишь одну прямую.

2. Прямая есть кратчайшее расстояние между двумя точками.

3. Через данную точку можно провести лишь одну прямую, параллельную данной.

Хотя вообще и обходятся без доказательства второй из этих аксиом, но было бы возможно вывести ее из двух остальных и из тех гораздо более многочисленных аксиом, которые допускаются скрыто, как я выясню это далее.

Долгое время тщательно искали доказательства третьей аксиомы, известной под названием постулата Евклида. Сколько было потрачено сил в этой химерической надежде, положительно не поддается описанию. Наконец, в начале прошлого столетия и почти одновременно двое ученых, русский – Лобачевский и венгерский – Бояи, установили неопровержимо, что это доказательство невозможно; этим они почти совсем избавили нас от изобретателей геометрии без постулата Евклида; с тех пор парижская Академия наук получает не более одного-двух новых доказательств в год. Но вопрос не был исчерпан; его разработка не замедлила сделать новый большой шаг с опубликованием знаменитого мемуара Римана «Ober die Нуроthesen, welche der Geometrie zum Grunde liegen»[4]. Эта маленькая работа вызвала к жизни большинство новых работ, о которых я буду говорить дальше и среди которых следует назвать работы Бельтрами и Гельмгольца.

Геометрия Лобачевского. Если бы возможно было вывести постулат Евклида из других аксиом, то, отбрасывая этот постулат и допуская другие аксиомы, мы, очевидно, должны были бы прийти к следствию, заключающему в себе противоречие; поэтому было бы невозможно на таких положениях построить цельную геометрическую систему.

Но как раз это и сделал Лобачевский. Он допускает сначала, что через точку можно провести несколько прямых, параллельных данной прямой.

Кроме этой, все другие аксиомы Евклида он сохраняет. Из этих гипотез он выводит ряд теорем, между которыми нельзя указать никакого противоречия, и строит геометрию, непогрешимая логика которой ни в чем не уступает евклидовой геометрии. Теоремы, конечно, весьма отличаются от тех, к которым мы привыкли, и вначале кажутся несколько странными.

Так, сумма углов треугольника всегда меньше двух прямых углов; разность между этой суммой и двумя прямыми углами пропорциональна площади треугольника.

Невозможно построить фигуру, подобную данной, но имеющую иные размеры.

Если разделить окружность на n равных частей и провести в точках деления касательные, то эти n касательных образуют многоугольник, если радиус окружности достаточно мал; но если этот радиус достаточно велик, они не встретятся.

Бесполезно было бы увеличивать число этих примеров; теоремы Лобачевского не имеют никакого отношения к евклидовым, но тем не менее они логически связаны между собой.

Геометрия Римана. Вообразим себе мир, заселенный исключительно существами, лишенными толщины, и предположим, что эти «бесконечно плоские» существа расположены все в одной плоскости и не могут из нее выйти. Допустим далее, что этот мир достаточно удален от других миров, чтобы не подвергаться их влиянию. Раз мы начали делать такие допущения, ничто не мешает нам наделить эти существа способностью мышления и считать их способными создать геометрию. В таком случае они, конечно, припишут пространству только два измерения.

Но предположим теперь, что эти воображаемые существа, оставаясь все еще лишенными толщины, имеют форму поверхности шара, а не форму плоскости, и расположены все на одной и той же сфере, с которой не могут сойти. Какую геометрию они могут построить? Прежде всего, ясно, что они припишут пространству только два измерения; роль прямой линии для них будет играть кратчайшее расстояние от одной точки до другой на сфере, т. е. дуга большого круга; одним словом, их геометрия будет геометрией сферической.

То, что они назовут пространством, будет эта сфера, с которой они не могут сойти и на которой происходят все явления, доступные их познанию. Их пространство будет безгранично, так как по сфере всегда можно безостановочно идти вперед, и тем не менее оно будет конечно, никогда нельзя дойти до края, но можно совершить кругообразное движение.

Геометрия Римана есть не что иное, как сферическая геометрия, распространенная на три измерения. Чтобы построить ее, немецкий математик должен был отбросить не только постулат Евклида, но, кроме того, еще и первую аксиому: через две точки можно провести только одну прямую.

На сфере через две данные точки можно провести вообще один большой круг (который, как мы сейчас видели, играл бы роль прямой для наших воображаемых существ); но есть одно исключение: если две данные точки диаметрально противоположны, то через них можно провести бесконечное множество больших кругов. Так и в геометрии Римана (по крайней мере в одной из ее форм) через две точки вообще можно провести только одну прямую; но есть исключительные случаи, когда через две точки можно провести бесконечное количество прямых.

Между геометриями Римана и Лобачевского существует в некотором смысле противоположность.

Так, сумма углов треугольника:

– равна двум прямым в геометрии Евклида;

– меньше двух прямых в геометрии Лобачевского;

– больше двух прямых в геометрии Римана.

Число линий, которые можно провести через данную точку параллельно данной прямой:

– равно единице в геометрии Евклида;

– нулю в геометрии Римана;

– бесконечности в геометрии Лобачевского.

Прибавим, что пространство Римана конечно, хота и безгранично, в указанном выше смысле этих двух слов.

Поверхности с постоянной кривизной. Остается возможным одно возражение. Действительно, теоремы Лобачевского и Римана не содержат никакого противоречия; но как бы ни были многочисленны следствия, которые вывели из своих допущений эти два геометра, все же последние должны были остановиться, не исчерпав всех возможных выводов, потому что число их бесконечно. Но тогда кто поручится, что если бы они продолжали свои выводы далее, то все же не пришли бы к противоречию?

Это затруднение не существует для геометрии Римана, если ограничиваться двумя измерениями; в самом деле, геометрия Римана для двух измерений не отличается, как мы видели, от сферической геометрии, которая есть только ветвь обыкновенной геометрии и которая, следовательно, стоит вне всякой дискуссии.

Бельтрами, сведя также и геометрию Лобачевского для двух измерений к тому, что она стала только ветвью обыкновенной геометрии, опроверг таким же образом направленное против нее возражение. Вот как он пришел к этому. Рассмотрим на некоторой поверхности произвольную фигуру. Представим себе, что эта фигура начерчена на гибком и нерастяжимом полотне, наложенном на эту поверхность, так что, когда полотно перемещается и деформируется, различные линии этой фигуры могут изменять форму, не меняя длины. Вообще, эта гибкая и нерастяжимая фигура не может перемещаться, не оставляя поверхности; но есть некоторые особые поверхности, для которых подобное движение было бы возможно: это поверхности с постоянной кривизной.

Назад Дальше