Энергия и цивилизация - Смил Вацлав 3 стр.


Когда эффективность рассчитана для производства продуктов питания (энергия в пище/энергия на входе для того, чтобы ее вырастить), топлива или электричества, ее обычно именуют энергоотдачей. Полезная энергоотдача в любом традиционном сельском хозяйстве опирается исключительно на мощность живой силы и должна значительно превышать единицу: съедобный урожай обязан содержать больше энергии, чем ее потребляется в виде пищи, необходимой людям и животным, которые производят этот урожай, а также тем, кто не работает и зависит от работающих. Непреодолимая проблема возникает, если мы пытаемся сравнить энергоотдачу в традиционном сельском хозяйстве, где используется только сила мускулов (и только преобразования недавно полученного солнечного излучения), и современным сельским хозяйством, которое спонсируется прямо (топливо для работ на полях) и косвенно (энергия, необходимая для синтеза удобрений и пестицидов и для производства сельскохозяйственных машин) ископаемым топливом и по этой причине неизбежно имеет более низкую энергоотдачу, чем традиционное сельское хозяйство (примечание 1.7).

И наконец, энергоемкость измеряет стоимость продуктов, услуг и даже общий объем производства в стандартных единицах энергии и стоимость самой энергии тоже. Среди наиболее широко используемых материалов алюминий и пластик имеют высокую энергоемкость, в то время как стекло и бумага сравнительно дешевы, а древесина (исключая затраты на фотосинтез) является наименее энергоемким из всех материалов (примечание 1.8). Техническое развитие в последние два века привело к тому, что энергоемкость во многих случаях значительно уменьшилась. Возможно, самый известный пример: плавка чугуна на коксе в больших домнах в наше время требует меньше чем 10 % энергии на единицу массы горячего металла, чем в случае доиндустриального производства чугуна на древесном угле (Smil 2016).

Примечание 1.7. Сравнение энергоотдачи в производстве продуктов питания

С начала 70-х годов XX века энергетические показатели начали использовать, чтобы показать превосходство традиционного сельского хозяйства и низкую энергоотдачу современного сельского хозяйства. Такие исследования на самом деле вводили нас в заблуждение, потому что между двумя способами ведения хозяйства имеется фундаментальное отличие. Показатели для традиционного сельского хозяйства – просто коэффициент между энергией пищи, полученной в результате сбора урожая, и энергией пищи, которая требуется для выращивания этого урожая с помощью труда человека и животных. Наоборот, в современном сельском хозяйстве показатели будут учитывать очень значительный расход невозобновляемого ископаемого топлива, которое требуется для работы сельскохозяйственных машин, для изготовления этих машин и химикалий; трудовые затраты в этом случае пренебрежимо малы.

Если коэффициенты рассчитывать только с учетом произведенной для поедания энергии и затраченного на ее производство труда, тогда современное сельское хозяйство с крохотной потребностью в человеческих усилиях, лишенное тягловых животных, будет намного превосходить любое традиционное.

Если же затраты на производство современных злаков будут включать все использованное топливо и электричество, то энергоотдача окажется значительно ниже, чем в традиционном сельском хозяйстве. Такие расчеты возможны по той причине, что в физическом смысле все виды энергии эквивалентны. Продукты питания и топливо могут быть выражены в одних и тех же единицах, но остается очевидная проблема сравнения «красного с соленым». Не существует удовлетворительного способа сравнивать, просто и прямо, энергоотдачу от двух систем сельского хозяйства, которые функционируют, опираясь на принципиально разные источники энергии.

Примечание 1.8. Энергоемкость широко распространенных материалов

Источник: данные из Smil (2014b).

Энергетические затраты на производство энергии (часто именуемые EROI, отдача энергии на затраты, хотя EROEI, отдача энергии на затраты энергии, было бы более корректным) являются показательными только в том случае, если мы сравниваем величины, которые рассчитаны по идентичным методам с использованием стандартных предположений и четко обозначаемых аналитических ограничений. Современные высокоэнергетичные общества предпочитают разрабатывать ресурсы ископаемого топлива с наиболее высокой полезной энергоотдачей, и именно по этой причине мы большей частью предпочитаем нефть, и богатые нефтяные месторождения Ближнего Востока в особенности. Плотность энергии у нефти очень высокая, ее легко транспортировать, она обладает и другими очевидными преимуществами (примечание 1.9).

Примечание 1.9. Отдача энергии на затраты

Различия в качестве и доступности разных видов ископаемого топлива колоссальны: тонкий подземный слой низкокачественного угля против толстого слоя качественного битуминозного угля, который можно добывать открытым способом; или супергигантские месторождения углеводородов Ближнего Востока против низкопродуктивных скважин, где требуется постоянная работа насосов. В результате значение EROEI варьируется очень сильно и может изменяться по мере появления более эффективных технологий добычи. Приведенные ниже значения – не более чем приблизительные показатели, иллюстрирующие разницу между ведущими методами извлечения и преобразования энергии (Smil 2008а, Murphy and Hall 2010). Для производства угля отдача варьируется между 10 и 80, для нефти и газа – от 10 до более 100; для больших ветровых турбин в наиболее ветреных локациях значения могут достигать 20, но большей частью меньше 10; для фотоэлектрических солнечных элементов не больше 2; а для современного биотоплива (этанол, биодизель) в лучшем случае 1,5, их производство часто ведет за собой затраты энергии, а не выгоду (EROEI всего лишь 0,9–1,0).

Сложности и предупреждения

Использование стандартных единиц для измерения запасов и потоков энергии с физической точки зрения очевидно и с точки зрения науки приемлемо, но все равно все сведения в общем знаменателе могут сбивать нас с толку. В первую очередь, здесь не учитываются критичные качественные различия между разными видами энергии. Два вида угля могут иметь одинаковую плотность энергии, но один может гореть хорошо и оставлять малое количество пепла, в то время как другой горит плохо, выделяет много диоксида серы и оставляет большое количество несгораемого материала. Изобилие угля с высокой плотностью энергии – идеальная ситуация для снабжения топливом паровых машин (часто используемый термин «бездымный» можно принять только как относительный), и именно такое изобилие стало важнейшим фактором, на котором базировалось доминирование Великобритании на морях в XIX веке, поскольку ни у Франции, ни у Германии не было больших запасов угля сравнимого качества.

Абстрактные единицы энергии не показывают различие между съедобной и несъедобной биомассой. Равные массы семян пшеницы и сухой соломы от пшеницы содержат в принципе одно и то же количество тепловой энергии, но солома, большей частью состоящая из целлюлозы, гемицеллюлозы и лигнина, не переваривается людьми, в то время как семена пшеницы (в составе около 70 % сложных крахмалистых углеводов и до 14 % белка) – прекрасный источник основных питательных веществ. Показатели также не учитывают конкретное происхождение пищевой энергии, проблему большой важности для правильного питания. Многие высокоэнергетические виды пищи не содержат или содержат в малом количестве белок и жиры, два питательных вещества, необходимых для нормального роста и функционирования тела, и не могут обеспечить организм микроэлементами – витаминами и минералами.

Имеются и другие важные качества, скрытые за абстрактными измерениями. Доступ к запасам энергии – совершенно очевидно важный момент. Древесина ствола и ветвей имеет одинаковую плотность энергии, но без качественных топоров и пил люди во многих доиндустриальных обществах могли только собирать ветви. Это все еще норма в наиболее бедных регионах Африки и Азии, где дети и женщины собирают древесную фитомассу; особенности траспортировки тоже имеют значение, поскольку древесину (ветки) приходится переносить на голове, и часто на значительные расстояния. Легкость использования и эффективность преобразования могут быть обманчивыми в процессе выбора топлива. Дом можно обогревать деревом, углем, бензином или природным газом, но лучшие газовые котлы сейчас показывают 97 % эффективности, поэтому они много дешевле в использовании.

Сжигание соломы в простых печах требует частого добавления топлива, а большие куски дерева могут гореть без присмотра долгими часами. Отсутствие вентиляции (или плохая вентиляция – через дыру в потолке) при сжигании сухого навоза сопровождается большим количеством дыма, а горение высушенных дров в хорошей печи – малым, при этом отравление продуктами горения в собственном доме остается важной причиной дыхательных заболеваний во многих бедных странах (McGranahan and Murray 2003; Barnes 2014). И если не уточнять их происхождение, то плотность энергетических потоков не будет отличаться в случае возобновляемых источников и ископаемого топлива, хотя различие между ними фундаментально в понимании природы и долговечности той или иной энергетической системы. Современная цивилизация возникла благодаря массовому и все растущему потреблению ископаемого топлива. Но такая практика очевидным образом ограничена тем, что эти запасы конечны и что последствия сжигания углеводородов негативны, так что высокоэнергетические общества могут выжить, только постепенно переходя на другие источники энергии.

Дальнейшие сложности возникают, когда сравниваешь эффективность одушевленной и неодушевленной трансформации энергии. В последнем случае это просто соотношение затрат топлива или электричества и полученной в результате энергии, но в первом ежедневный расход пищи нельзя рассматривать как энергетические затраты, поскольку большая часть полученной энергии уходит на поддержание базового метаболизма – работу внутренних органов, циркуляцию крови, сохранение температуры тела. А базовый метаболизм надо поддерживать вне зависимости от того, работают или отдыхают люди или животные. Расчет полезных энергетических затрат, возможно, является наиболее удовлетворительным решением (примечание 1.10).

Примечание 1.10. Расчет полезных энергетических затрат человеческого труда

Не существует универсального общепринятого способа выразить энергетические затраты на человеческий труд, и расчет полезных затрат, возможно, наилучший выбор: это потребление энергии человеком сверх того, что является жизненно необходимым, что требуется, даже если не выполняется никакой работы. Подобный подход описывает труд человека через актуальный прирост затрат энергии. Общие затраты энергии – результат умножения базовой (в состоянии покоя) скорости метаболизма и уровня физической активности (ОЗЭ = БСМ х УФА), и прирост затрат энергии будет очевидным образом составлять разницу между ОЗЭ и БСМ. БСМ взрослого мужчины весом 70 кг будет около 7,5 МДж/сутки, женщины весом 60 кг – около 5,5 МДж/сутки. Если мы предположим, что тяжелая работа увеличивает дневной расход энергии на 30 %, то полезные затраты составят 2,2 МДж/сутки для мужчины и 1,7 МДж/сутки для женщины. Поэтому я буду использовать 2 МДж/сутки во всех приблизительных расчетах полезного дневного расхода энергии при добывании пищи, традиционном сельском хозяйстве и работе на производстве.

Дневное количество пищи нельзя рассматривать как энергетические поступления на трудовые затраты: базовый метаболизм (работа внутренних органов, циркуляция крови, поддержание температуры тела) протекает вне зависимости от того, работаем мы или отдыхаем. Изучение физиологии мускулов, особенно труды Арчибальда В. Хилла (1886–1977, лауреат Нобелевской премии 1922 года) дали возможность измерить эффективность мышечной работы (Hill 192; Whipp and Wasserman 1969). Коэффициент полезного действия при аэробной нагрузке около 20 %, и это значит, что 2 МДж/сутки метаболической энергии, затраченной на физическую работу, произведут полезной работы на величину, эквивалентную 400 кДж/сутки. Я буду использовать это приближение во всех последующих вычислениях. И для сравнения, коллеги (Kander, Malanima and Warde 2013) использовали общее потребление пищи, а не актуальные затраты полезной энергии в своем историческом сравнении источников энергии. Они приняли среднее потребление пищи в год 3,9 ГДж/сутки на особь, и это значение не менялось с 1800 по 2008 год.

Но даже в намного более простых обществах, чем наше, значительную часть труда составляет умственный – принятие решений о том, как подступиться к задаче, как выполнить ее при имеющихся ресурсах, как снизить энергетические издержки. Метаболические затраты на размышления, даже очень напряженные, невелики по сравнению с постоянным мускульным напряжением. С другой стороны, умственное развитие требует многих лет, знакомства с языком, социализации и обучения как прямого, так и посредством накопления опыта, и по мере того, как общество усложняется, этот процесс становится все более сложным и долгим, обзаводится собственными социальными институтами вроде школ и университетов. А все это требует значительных косвенных затрат энергии на поддержание как материальной инфраструктуры, так и нематериальных человеческих познаний.

Круг замкнулся.

Я отметил потребность в количественных оценках, но реальное понимание роли энергии в истории требует намного большего, чем простое сведение всего к различным числам в джоулях и ваттах, и игр с этими числами для получения всеобъемлющих объяснений. Мне придется справиться с этим вызовом, используя широкий подход: я буду применять конкретные значения плотности энергии и мощности и указывать на повышение КПД, но при этом не стану игнорировать многие качественные моменты, относящиеся к использованию различных видов энергии. И пусть императивы энергетических потребностей и способов использования энергии наложили глубокий отпечаток на наше прошлое, многие детали и последствия этих фундаментальных эволюционных детерминант могут быть объяснены только с точки зрения человеческих мотиваций и предпочтений и только признанием тех удивительных и часто необъяснимых выборов, которые направляют историю нашей цивилизации.

2. Энергия в доисторические времена

Понимание истоков рода Homo и заполнение деталями его последующей эволюции – бесконечный квест, поскольку находки отодвигают старые маркеры и усложняют картину, ученые открывают новые виды, которые не соответствуют существующей иерархии (Trinkaus 2005; Reynolds and Gallagher 2012). На 2015 год старейшими, надежно датированными гомининами остаются Ardipithecus ramidus (4,4 миллиона лет назад, найден в 1994 году) и Australopithecus anamensis (4,1–5,2 миллиона лет назад, найден в 1967 году). Значимым дополнением 2015 года был Australopithecus deyirimeda (3,3–3,5 миллиона лет назад) из Эфиопии (Hayle-Selassie et al. 2015). Последовательность более молодых гоминин включает Australopithecus afarensis (найден в 1974 году в Лаэтоли, Танзания, и в Хадаре, Эфиопия), Homo habilis (обнаружен в 1960 году в Танзании) и Homo erecrus (появился 1,8 миллиона лет назад, множество находок в Африке, Азии и Европе, самые молодые датируются 250 тысячами лет назад).

Повторный анализ первых костей Homo sapiens, найденных Ричардом Лики в Эфиопии в 1967 году – показал датировку порядка 190 тысяч лет назад (McDougall, Brown, and Fleagle 2005). Наши прямые предки добывали пищу охотой и собирательством, и только 10 тысяч лет назад отдельные маленькие группы начали переходить к оседлому образу жизни, базой которого стали одомашненные растения и животные. Это значит, что миллионы лет стратегии добывании пищи гоминин не отличались от стратегий наших примитивных предков, но сейчас у нас есть изотопные доказательства из Восточной Африки, что около 3,5 миллиона лет назад рацион гоминин начал отличаться от рациона сохранившихся человекообразных обезьян. Исследователи (Sponheimer and co-workers 2013) обнаружили, что с этого времени несколько таксонов гоминин начали вводить в свой рацион пищу, обогащенную изотопом 13С (произведенную в результате С4-метаболизма), и поэтому состав изотопов углерода у них в организме сильно отличался от такового у африканских млекопитающих. Опора на растения С4 таким образом имеет древнее происхождение, в современном сельском хозяйстве есть два С4-растения: кукуруза и сахарный тростник, и они характеризуются более высокими средними урожаями, чем любой другой вид, дающий нам зерно или сахар.

Назад Дальше