Цифровое общество в культурно-исторической парадигме - Коллектив авторов 2 стр.


2. Войскунский А.Е. Развивается ли агрессивность у детей и подростков, увлеченных компьютерными играми? // Вопросы психологии. 2010. № 6. С. 119–130.

3. Войскунский А.Е. Cоциальная перцепция в социальных сетях // Вестник Московского университета. Серия 14. Психология. 2014. № 2. С. 90–104.

4. Войскунский А.Е. Поведение в киберпространстве: психологические принципы // Человек. 2016. № 1. C. 36–49.

5. Грановеттер М. Сила слабых связей // Экономическая социология. 2009. Т. 10. № 4. С. 31–50.

6. Марцинковская Т.Д. Информационное пространство как фактор социализации современных подростков // Мир психологии. 2010. № 3. С. 90–102.

7. Рассказова Е.И., Емелин В.А., Тхостов А.Ш. Диагностика психологических последствий влияния информационных технологий на человека. М.: Акрополь, 2015.

8. Смолл Г., Ворган Г. Мозг онлайн: Человек в эпоху Интернета. М.: КоЛибри, 2011.

9. Солдатова Г.У., Рассказова Е.И., Нестик Т.А. Цифровое поколение России: компетентность и безопасность. М.: Смысл, 2018.

10. Файола Э., Войскунский А.Е., Богачева Н.В. Человек дополненный: становление киберсознания // Вопросы философии. 2016. № 3. C. 147–162.

11. Ширки К. Включи мозги. Свободное время в эпоху Интернета. М.: Карьера Пресс, 2012.

12. Yee N. The Proteus Paradox: How Online Games and Virtual Worlds Change Us–And How They Don't. Yale University Press, 2014.

Directions of studies in cyberpsychology
Voiskounsky A.E.,
Lomonosov Moscow State University, Moscow

Abstract. The leading directions of cyberpsychological studies describing human behavior (interactive, cognitive, gameplaying, consumer, etc.) on the Internet are introduced and discussed. These directions include: anonymity, hybrid behavior (transfer from virtual to real life and vice versa), leveling up reputation, mobility, immersion, distribution.

Keywords: cyberpsychology, virtuality, anonymity, hybrid behavior, leveling up reputation, mobility, immersion, distributed behavior.

Перспективы психологических исследований внедрения технологий искусственного интеллекта2

Нестик Т.А.,
Институт психологии РАН, г. Москва

Аннотация. В статье рассматриваются проблемы, которые ставит внедрение технологий «слабого», или специализированного, искусственного интеллекта в повседневную жизнь для психологической науки и практики. Обращается внимание на исследование последствий использования алгоритмов для когнитивного и эмоционального развития личности; влияние культурных различий на разработку и подходы к использованию ИИ; возможности, открываемые ИИ для увеличения осознанности, конструирования личностью своей идентичности, образа Я и временной перспективы, для целенаправленного управления самопрезентацией; влияние программируемости мира на процессы каузальной атрибуции и доверие к социальным институтам; последствия использования машинного обучения в системах поддержки группового принятия решений; влияние ИИ на правовое сознание и способы мобилизации права. Особенно острыми признаются психологические проблемы, связанные с появлением «лишних людей», потерявших работу в ходе автоматизации. Автор обращает внимание на вероятность снижения осознанности и рефлексивности общества под влиянием цифровой «архитектуры выбора», а также на увеличение культурного разрыва между теми, кто готов к неопределенности и выбору, и теми, кто стремится избежать необходимости что-либо выбирать, перекладывая ответственность на обезличенные алгоритмы.

Ключевые слова: искусственный интеллект, машинное обучение, осознанность, групповое принятие решений, каузальная атрибуция, социальное доверие, толерантность к неопределенности, архитектура выбора.

Среди технологий, стремительно меняющих повседневную жизнь людей, системы на основе «слабого» искусственного интеллекта занимают особое место. Во-первых, в эпоху, когда технологический оптимизм сопровождается социальным пессимизмом, именно с этими технологиями связана надежда на улучшение работы социальных институтов и оздоровление целых сфер жизни общества, таких как государственное управление, коммунальные услуги, общественный транспорт, здравоохранение, даже образование и СМИ. Машинное обучение, анализ больших данных и блокчейн рассматриваются как своего рода лекарство или даже протез для слабеющего социального доверия. Во-вторых, существует возможность появления «сильного» искусственного интеллекта, который, в отличие от других технологий, не только в массовом сознании, но и среди экспертов наделяется характеристиками субъекта, представляется как сила, способная со временем подчинить себе человека (Turchin, Denkenberger, 2018). Как показывают проведенные нами эмпирические исследования, отношение молодежи к технологиям искусственного интеллекта существенно различается в зависимости от сферы их применения, при этом наибольшие опасения вызывают автономные киберфизические системы, предполагающие вмешательство в человеческое тело и в процессы принятия решений (Нестик, 2018).

Одна из причин тревоги по поводу развития искусственного интеллекта связана с так называемой проблемой «черного ящика»: не только политики и обыватели, но и сами разработчики не могут в точности объяснить логику, лежащую в основе тех или иных заключений, сделанных самообучающейся нейросетью (Knight, 2017). Влияние таких алгоритмов на общество трудно оценить, так как их коды защищены коммерческой тайной, а истинные цели часто не ясны.

Искусственный интеллект, интернет вещей и анализ больших данных являются ключевой частью того пакета цифровых технологий, которые лежат в основе автоматизации, «платформенной экономики» и сдвига границ отраслей. По мнению экспертов Price Waterhouse Coupers, влияние этих технологий на общество не будет мгновенным, и будет нарастать в виде трех волн автоматизации. Первая волна завершится к середине 2020-х гг., она охватила прежде всего финансовый, IT и телекоммуникационный секторы и затрагивает в основном легко автоматизируемые операции с доступными данными. Вторая волна к концу 2020-х будет связана с оснащением людей-операторов новыми физическими и когнитивными возможностями: охватит производство, хранение и доставку, а также сферу розничных продаж. Наконец, третья волна к середине 2030-х гг. будет связана с появлением автономных систем (например, транспортных), где принятие решений в меняющейся обстановке будет доверено искусственному интеллекту. Эти изменения по-разному ощущаются людьми в зависимости от страны проживания и профессии, например, ожидается, что в Юго-Восточной Азии, Северной Европе и России влияние автоматизации затронет меньше рабочих мест по сравнению с Восточной Европой и США (Parlett et al., 2018).

В отличие от европейских стран и США, в российском массовом сознании последствия автоматизации труда пока недооцениваются. Как показал опрос россиян, проведенный ВЦИОМ по репрезентативной выборке в декабре 2017 г., 74% убеждены, что в обозримом будущем их рабочее место не смогут занять роботы (Роботизация работы…, 2017). При этом 73% вообще никогда не задумывались об этой проблеме. Большинство (62%) считают тенденцию к замене людей на рабочих местах роботами и алгоритмами неправильной, причем наиболее категорично это мнение отстаивает именно молодежь, а не старшее поколение (так считают 70% в группе 18–24 лет по сравнению с 55% в группе 45–59 лет).

Внедрение технологий «слабого», специализированного искусственного интеллекта (ИИ) в повседневную жизнь ставит перед психологической наукой и практикой целый ряд проблем, актуальность которых будет нарастать в ближайшие годы. Анализ этих проблем позволяет сформулировать несколько перспективных направлений социально-психологических исследований.

Чрезвычайно актуальным сегодня является исследование последствий использования алгоритмов для когнитивного и эмоционального развития личности. Например, остается не вполне ясным, как распределение когнитивных задач между ИИ и человеком повлияет на развитие интеллекта и когнитивный стиль. Например, как изменится роль эмоций в человеческом познании? Повысит ли использование систем распознавания лиц эмоциональный интеллект человека? С другой стороны, нужно разобраться в том, как особенности мышления самих разработчиков и пользователей самообучающихся алгоритмов влияют на окружающий нас, все более программируемый мир. Как будет развиваться ИИ в культурах с холистическим и аналитическим мышлением?

Влияние культурных различий на разработку и подходы к использованию ИИ остается пока не изученным. Между тем, значимость этой проблемы определяется не только растущим влиянием машинного обучения на интеллект интернет-пользователей, но и в связи с разворачивающейся конкуренцией между Китаем, Россией, США и Европой в области создания ИИ. По данным агентства CB Insights, в 2017 г. доля Китая в общемировом финансировании стартапов по разработке ИИ составила 48%. Использование ИИ в системах стратегической безопасности и кибероружия требует учета культурных и психологических особенностей взаимодействия человека с искусственным интеллектом. Если влияние культурных особенностей обучающих выборок, а также кросс-культурных различий самих разработчиков и заказчиков ИИ на работу таких систем подтвердится, то возникает еще один вопрос: как эти различия повлияют на взаимодействие между двумя и более конкурирующими системами ИИ?

Развитие систем с использованием искусственного интеллекта окажет влияние не только на когнитивные процессы, но и на целый ряд личностных феноменов: Я-концепцию, самоотношение и способы самопрезентации, стратегии коупинга, временную перспективу и др. Например, расширятся возможности для конструирования своей идентичности и целенаправленного управления самопрезентацией. Развитие интернета вещей, персональных помощников и возможностей для тонкой настройки окружающего личность цифрового мира при помощи самообучающихся алгоритмов приведет к формированию расширенного образа Я, включающего в себя более отчетливое представление о том, как нас воспринимают окружающие, каково наше физическое и эмоциональное состояние. При этом уже сегодня у пользователей социальных сетей появляется возможность в режиме реального времени сравнивать себя с другими людьми по гораздо большему числу физических, психологических и социальных параметров. Появится больше оснований для чувства депривации и несправедливости. Создание различных социальных рейтингов на основе обрабатываемых алгоритмами цифровых следов может привести как к обострению чувствительности к социальному сравнению, так и к десенсибилизации, безразличию, особенно если сравнение оказывается не в нашу пользу. Требуются специальные исследования того, как эти изменения скажутся на первичной и вторичной социализации личности.

Возможность анализа цифровых следов личности, накопленных за десятилетия, с помощью ИИ расширит временную перспективу в прошлое и будущее. Эффекты автобиографической памяти, искажения при прогнозировании человеком своих эмоциональных реакций и поступков, эффект дисконтирования будущего – все это будет корректироваться ИИ на основе нашего реального поведения в прошлом, а также больших данных о поведении других людей. Последствия этих изменений для личности уже сегодня можно моделировать на основе лабораторных экспериментов и анализа Big Data.

Однако искусственный интеллект как инструмент повышения осознанности будет востребован далеко не всеми. Более вероятен спрос на те его функции, которые связаны с когнитивным упрощением действительности. Развитие цифровых технологий, в том числе полномасштабное внедрение машинного обучения в повседневную жизнь, углубляет культурный разрыв между теми, кто готов к неопределенности и выбору, и теми, кто стремится избежать необходимости что-либо выбирать. Искусственный интеллект дает возможность личности переложить ответственность за свои действия на обезличенный алгоритм и его разработчиков. Это уже происходит в сфере таргетированной интернет-рекламы и новостей, где персонализация контента помещает человека в «пузырь» его собственных интересов, отменяя необходимость самостоятельно искать информацию.

Более того, алгоритмы превращаются в «архитектуру выбора», подталкивающую нас к решениям, которые должны повысить качество нашей жизни (Талер, Санстейн, 2017). Даже если в основе такого цифрового патернализма будут либеральные ценности, – что кажется маловероятным в культурах с вертикальным коллективизмом, – использование алгоритмов, корректирующих несовершенство человеческой природы ради благих целей, может способствовать снижению осознанности и рефлексивности общества.

В этой связи нельзя не упомянуть о растущей актуальности исследований, направленных на поиск психологических механизмов, которые делают личность уязвимой в отношении информационных компаний в социальных медиа, опирающихся на технологии ИИ. Сегодня специально обученные нейросети позволяют создавать вымышленный видеоконтент, неотличимый от настоящего. Созданные искусственным интеллектом видеодвойники политиков или значимых для конкретного человека людей могут говорить заданные тексты, обращаться с призывами, которых никогда не произнесли бы их реальные прототипы. Стало возможно управление такими видеодвойниками в режиме реального времени (Memes That Kill, 2018). Использование ИИ позволяет перевести информационные войны в полностью автоматизированный режим, когда нейросети сами скачивают метаданные «мишеней» и анализируют их психологический профиль по цифровым следам в поиске уязвимостей, затем генерируют искусственный видеоконтент с учетом этих психологических профилей, организуют армию ботов для его вброса в социальные сети, таргетируют сообщения для тех пользователей, которые с наибольшей вероятностью перешлют эту информацию своим друзьям, а затем проводят автоматизированную оценку разрушительного воздействия информационной кампании на общество страны-противника.

Сегодня вновь приобретают актуальность исследования конформности и подчинения, однако, в роли авторитетного другого будут выступать не экспериментаторы, а киберфизические системы, искусственный интеллект или специалисты по большим данным, психологически бесконечно далекие для обывателя. Чрезвычайно важно изучить, как все большая «искусственность» управляемой нейросетями повседневной жизни повлияет на фундаментальные психологические феномены – объяснение человеком своих успехов и неудач, веру в способность влиять на свое будущее, убеждение в справедливости мира, доверие к социальным институтам.

Перечисленные нами проблемы станут обостряться по мере того, как автоматизация будет приводить к потере все большего числа рабочих мест, особенно в массовых профессиях – среди продавцов, водителей и грузчиков, бухгалтеров, юристов, программистов. Потеряв работу из-за внедрения технологий искусственного интеллекта, они все равно будут вынуждены этими технологиями пользоваться. Какие требования будут предъявлять к искусственному интеллекту люди, вынужденные менять профессиональную идентичность? Каковы социально-психологические последствия появления в обществе большого количества «лишних людей»?

Целый ряд важных направлений исследований можно выделить в связи с влиянием ИИ на межличностные отношения и социальные группы. Применение машинного обучения уже сегодня влияет на формирование персонального социального капитала и межличностное сравнение в социальных сетях, подсказывая нам людей, похожих на нас. Как повлияют персональные помощники на процессы каузальной атрибуции? Будем ли мы по-прежнему более склонны объяснять поведение других людей их личностными качествами, а не обстоятельствами? Внимание исследователей сосредоточено на том, как люди взаимодействуют в мультиагентных человеко-машинных системах, в том числе с социальными роботами. Особенно перспективными в этом направлении представляются модели «межличностного» восприятия роботов (Kotov, 2017), а также исследования психологии взаимодействия людей с роевым интеллектом (Карпов, 2018). Вместе с тем, недостаточно внимания уделяется тому, какое влияние слабый (специализированный) искусственный интеллект в качестве интеллектуального агента может оказывать на групповую динамику, как он участвует в групповой рефлексии, формировании ситуативной осознанности и ментальных моделей. Прежде всего это касается использования машинного обучения в системах поддержки группового принятия решений. Примером могут служить нейросети, которые по обмену сообщениями в корпоративных чатах дают не только оценку эмоционального состояния и лояльности участников той или иной команды, но и прогноз эффективности проектных групп. Как рекомендации основанных на ИИ экспертных систем будут влиять на принятие кадровых решений, ролевые ожидания участников, межличностное восприятие и внутригрупповое доверие? В каких случаях совместного принятия решений такая система должна быть наделена чертами виртуальной личности, действовать как «член команды», а в каких – полностью обезличена?

Назад Дальше