Рис. 1.3. Атомы Демокрита
Важнее другое: философ фактически впервые применил метод модельной гипотезы, в ходе которого на основе определенных свойств вещества предлагается модель его внутреннего строения, позволяющая описать новые свойства. Вот как позднее (в I в. до н.э.) образно описывал этот метод Лукреций Кар в своей знаменитой поэме «О природе вещей» (перевод с латинского Ф. Петровского):
Родоначальником натурфилософии считают древнегреческого философа Аристотеля (рис. 1.4). Он известен как воспитатель Александра Македонского и основатель философской школы – Ликея (или Лицея). Аристотель разработал учение, охватывающее самые разнообразные аспекты природных явлений и жизни общества и суммирующее все современные ему знания о мире. В основе этого учения, которое господствовало почти две тысячи лет, предложенный Аристотелем метод рассуждений, которому он обучал своих учеников – формальная логика.
Свои идеи Аристотель изложил в труде, который назвал «Органон», поскольку считал, что логика является органоном (инструментом) мышления. Формальная логика включает ряд законов, следуя которым можно получать верные умозаключения. Термин «формальная» означает, что логические рассуждения изучаются в отрыве от их наполнения конкретным содержанием. Ключевое понятие в ней – силлогизм (от гр. умозаключение). Это вид рассуждений, в котором из двух суждений-посылок, вытекает третье суждение – вывод. При этом посылки связаны общим «средним термином». Аристотель сформулировал основной принцип силлогизма: «Когда одно сказывается о другом, как о подлежащем, то всё, что говориться о сказуемом будет говориться и о подлежащем». Классический пример: «Все люди смертны. Сократ – человек. Сократ смертен». В нем «средним термином» является понятие «человек». Оно позволяет связать воедино две посылки и вывести заключение о смертности Сократа.
Рис. 1.4. Аристотель (384-322 гг. до н.э.)
Формальная логика в преобразованном и расширенном виде (ее называют символическая или математическая логика) активно используется и в современной науке. Однако одно из заблуждений Аристотеля послужило существенным тормозом в дальнейшем развитии естествознания на протяжении почти двух тысяч лет, когда господствовало его учение. Он считал, что в исследовании природы истинное знание можно получить умозрительным методом.
Кратко суть этого метода можно выразить формулой: «Наблюдение плюс формальная логика равно достоверный вывод». Сам метод имел огромное значение для формирования натурфилософской картины мира. Однако в нем не было очень важного и привычного нам сегодня элемента – эксперимента. Результатом применения этого метода стали такие естественнонаучные заблуждения как «Движимое движется» и «Тяжелые тела падают быстрее легких». Прошло более полутора тысяч лет, прежде чем они были опровергнуты Г. Галилеем и И. Ньютоном.
Этап застоя в развитии естествознания. Этот этап приходится на Средние века, с которыми ассоциируются главенство религии и костры инквизиции. Естествознание сосредоточилось в лабораториях алхимиков и астрологов. Заметим, что на тот момент это не были лженауки, с их помощью было сделано немало открытий. Европейскую науку того времени называют «схоластика» (от греческого – школьный) – наука, в которой никакая мысль не может быть принята, если она не подкреплена ссылками на авторитеты (прежде всего богословские авторитеты). Это, конечно, тормозило развитие научного знания. Отсюда и название – этап застоя, хотя оно условно и применимо, в первую очередь к европейской науке в период раннего и среднего средневековья.
Научное лидерство из Европы переместилось на Ближний и Средний Восток. В VII—X вв. было создано и процветало единое арабское государство – Арабский халифат. Ученые в этом государстве имели высокий статус. Согласно Корану, чернила ученого также драгоценны, как и кровь мученика, павшего за веру. Но при этом, если науки говорят о том, что есть в Коране, то они излишни, а если о том, чего нет, то они вредны. Поэтому развивалось в основном прикладное знание.
Так, естествоиспытатель аль-Бируни (X в.) измерил плотности различных веществ с помощью изготовленного им прибора и подробно описал свойства более 50 минералов, руд, металлов, сплавов. 45 сочинений он посвятил астрономии. Аль-Бируни рассмотрел гипотезу о движении Земли вокруг Солнца, объяснил фазы Луны (рис. 1.5). В ходе астрономических наблюдений он установил угол наклона эклиптики к экватору, рассчитал радиус Земли, описал изменение окраски Луны при лунных затмениях и солнечную корону при солнечных затмениях.
Рис. 1.5. Иллюстрация из книги аль-Бируни (различные фазы Луны)
Больших успехов достигла медицина того времени. Огромный вклад в развитие средневековой медицины внес Авиценна (X – XI в.). В 5-томном труде «Канон врачебной науки» собраны сведения по фармакологии, дано подробное описание анатомии человека, установлены характерные признаки многих болезней.
Переходный этап. В конце средних веков (эпоха Возрождения) в европейской науке было сделано много величайших открытий, изменивших картину мира того времени: в частности, установлено, что Земля – шар, и что она не является центром Вселенной (гелиоцентрическая система Коперника). Великие географические открытия (путешествия Х. Колумба, Васко де Гамы, Ф. Магеллана и др.) позволили определить очертания большей части суши.
Леонардо да Винчи (XV – XVI в.) – гений эпохи Возрождения и величайший из инженеров, которых знала история. Во многих областях естествознания – гидравлике, оптике, анатомии, ботанике и др., – он опередил свое время. Им разработаны чертежи и описания аппаратов, которые стали реальностью только в XX веке – прообразы вертолета, дельтаплана, водолазного костюма, парашюта и др. (рис. 1.6). Научные прорывы Леонардо да Винчи связаны с отказом от умозрительного метода. Он прекрасно понимал роль эксперимента в исследовании природы, писал о том, что «знание – дочь опыта», что «нужно ограничивать рассуждения опытом».
Однако в массовом сознании традиционные донаучные представления сохранялись, несмотря на серьезные достижения в естествознании. Церковь успешно противостояла новым идеям, используя средневековое средство – инквизицию.
Рис. 1.6. Прообраз парашюта на рисунке Леонардо де Винчи
Умозрительный метод интуитивно применялся людьми и в обыденной жизни. Сегодня сложно в это поверить, но даже сравнительно недавно, в XV веке, жители Флоренции считали, что у мужчин и женщин разное число ребер. Действительно, умозрительный метод приводит к однозначному выводу: «Поскольку Ева сотворена из ребра Адама, то, однозначно можно утверждать, что у мужчин на одно ребро меньше, чем у женщин».
Научный этап. Рождение естествознания как науки относят к началу XVII века. С открытия законов классической механики (Г. Галилей, И. Ньютон) и законов движения планет (Тихо Браге, И. Кеплер), с изобретения приборов, позволяющих проникнуть в тайны микро- и мега- мира (микроскоп, телескоп) начинается новый этап развития естествознания, который принято называть научным. Для него характерно деление естествознания на отдельные науки (физика, химия, биология, астрономия, география) и бурное развитие этих наук. В это время утверждает свои позиции новая цель познания природы – не просто «наука ради науки», как в античности, а наука как средство преобразования действительности. Эта цель кратко сформулирована в афоризме Р. Декарта: «Знание – сила».
Перечисление имен и открытий ученых, работавших на этом этапе, составило бы целую энциклопедию. Практически все, что вы изучали в школе и изучаете в вузе по естественнонаучным предметам, относится именно к этому этапу. Назовем лишь некоторые события и имена ученых (рис. 1.7), которые являются знаковыми для различных областей естествознания.
Астрономия: 1543 г. – создание Н. Коперником гелиоцентрической системы мира, согласно которой Солнце является центральным небесным телом, вокруг которого вращается Земля и другие планеты. Заметим, что по дате – это событие переходного этапа, но по своему значению, оно несомненно относится к научному, поскольку положило начало первой научной революции.
Физика: 1687 г. – выход книги И. Ньютона «Математические начала натуральной философии», которая заложила основы классической механики и всей физики как науки.
Биология: 1859 г. – публикация труда Ч. Дарвина «Происхождение видов», который положил начало эволюционной биологии и эволюционной концепции всего естествознания в целом.
Химия: 1869 г. – открытие Д. И. Менделеевым Периодического закона и создание Периодической таблицы химических элементов.
Рис. 1.7. Великие ученые нового времени
Научный этап развития естествознания – очень короткий: всего одна секунда по шкале Карла Сагана (на этой шкале 1 год соответствует времени жизни Вселенной от Большого взрыва до наших дней). Но при этом надо понимать, что любые достижения цивилизации: тепло и свет в наших домах, автомобили, поезда, самолеты, компьютеры, мобильные телефоны, средства лечения страшных болезней и многое-многое другое, – результат деятельности огромной когорты естествоиспытателей, как всемирно известных, так и рядовых, которые неустанно работают во благо науки.
Что же обусловило такой качественный скачок в познании природы после двух тысячелетий сравнительно плавного развития событий? Ключевой момент, ознаменовавший научный этап развития естествознания, – разработка и широкое проникновение в практику исследования природы особого метода исследования – научного метода. Он пришел на смену умозрительному методу, предложенному еще Аристотелем. Родоначальники научного метода – ученые-естествоиспытатели XVII века: Ф. Бэкон, Р. Декарт, Г. Галилей. Именно научный метод позволил преодолеть такие веками существовавшие заблуждения как «движимое движется», «тяжелые тела падают быстрее легких» и многие другие, и стал тем компасом, который указывает направление поиска ученым всего мира во всех областях естествознания. Описанию этого метода посвящены следующие параграфы данной главы.
1.2. Классификация методов научного познания
Термин «методы научного познания». Слово «метод» происходит от древнегреческого «μέθοδος» – путь познания, исследования, и означает последовательность действий, направленную на достижение определенной цели. Методами научного познания
Конец ознакомительного фрагмента.